Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общий обзор. В описанных выше экспериментах с контрольной группой каждый раз используются лишь два типа условий — «есть воздействие» либо «нет воздействия»




В описанных выше экспериментах с контрольной группой каждый раз используются лишь два типа условий — «есть воздействие» либо «нет воздействия». Эти два типа условий по сути можно рассматривать как два уровня независимой переменной, которым можно присвоить условные числовые значения — например, «1» и «0». Иными словами, с точки зрения уровня измерения незави­симая переменная является номинальной, качественной. В контрольной группе ее значение равно нулю, в экспериментальной — единице. Однако исследователь часто располагает значительно большей информацией о независимой переменной и способен измерить и проконтролировать ее по крайней мере на трех-четырех уровнях значений. Соответственно экспериментальная гипотеза может быть сформулирована в терминах более или менее интенсивного воздей­ствия либо наличия-отсутствия «отклика» зависимой переменной при конкрет­ных уровнях независимой переменной.

В психологии хорошо известен закон «оптимума мотивации», так называ­емый закон Йеркса-Додсона.

В начале нашего века Р. Йеркс изучал, как влияет негативное подкрепле­ние в форме удара электрическим током на выработку элементарных на­выков у животных. В частности, в опытах с «танцующими мышами» (раз­новидность домашней мыши, имеющая генетический дефект, который заставляет ее двигаться по кругу или по восьмерке) он использовал три уровня силы тока — «сильный» (500 усл. ед.), «средний» (300 усл. ед.) и «слабый» (125 усл. ед.). Мышь должна была научиться выбирать один из двух туннелей. В конце туннеля ее в любом случае ожидало «вознаграждение» — мышь противоположного пола. При ошибочном выборе (белый туннель) мышь испытывала удар током, при правильном выборе (черный туннель) негативное подкрепление отсутствовало. Местоположение туннелей (слева-справа) менялось случайным образом от пробы к пробе. Выяснилось, что быстрее всего обучение происходит при «средней» вели­чине стимуляции. Обнаруженный в этом эксперименте нелинейный ха­рактер связи между величиной стимула к решению определенной задачи и успешностью решения был затем неоднократно подтвержден и во многих других экспериментах, в том числе с испытуемыми-людьми и с пози­тивной стимуляцией. Чрезмерная мотивация и чрезмерная величина под­крепления, как и слабая мотивация, всякий раз оказывали меньшее воз­действие на успешность выполнения различных задач.

Эксперименты, в которых используется несколько (более двух) уровней незави­симой переменной, называются многоуровневыми. Схема вышеописанного эксперимента с рандомизацией и тремя уровнями независимой переменной 1Х2, Х3) такова:

 

R X1 O1  
  R X2 O2
  R X3 O3
             

 

Экспериментальная гипотеза в этом случае формулируется как гипотеза об от­ношениях значений О1, О2 и О3(в рассмотренном примере О1 < О2и O2 > O3). Независимая переменная в многомерном эксперименте может иметь и более трех уровней. Иначе говоря, она может быть «нормальной» количественной переменной, измеренной на интервальном или абсолютном уровне. Соответ­ственно гипотеза многомерного эксперимента может формулироваться в более точных терминах — как гипотеза об «относительно-абсолютных» или даже «аб­солютно-абсолютных» отношениях переменных. Например, в эксперименте может изучаться влияние привлекательности лектора на частоту посещения занятий студентами, воздействие количества доступных источников информации о продукте на формирование потребительских предпочтений либо характер вза­имосвязи между размером денежного вознаграждения испытуемых и успешно­стью решения ими однотипных задач. Таким образом, многомерные экспери­менты позволяют проверять более тонкие и точные содержательные гипоте­зы о механизмах индивидуального и группового поведения.

Статистические гипотезы, проверяемые в многомерных экспериментах, — это гипотезы о различиях между значениями зависимой переменной для разных уровней независимой переменной. Нулевая гипотеза формулируется как гипотеза о том, что разброс индивидуальных значений внутри одного уровня независимой переменной (внутри соответствующей экспериментальной группы) идентичен разбросу индивидуальных значений между различными уровнями (группами), т. е. отношение дисперсии межгрупповых оценок к дисперсии внутригрупповых оценок равно 1. Последнее отношение обозначается как F-критерий. Для того чтобы определить, не превышает ли полученная в конкретном 8 эксперименте величина F пороговое значение статистического F-распределения для заданного уровня значимости, используют статистическую технику однофакторного дисперсионного анализа. Термин «однофакторный» в данном случае означает, что в эксперименте использовалась лишь одна независимая переменная (фактор воздействия). Рассмотрение техники дисперсионного ана­лиза и статистического оценивания получаемой в результате величины F вы­ходит за пределы данного обзора (детальные описания и рекомендации при необходимости можно найти в книгах из списка дополнительной литерату­ры к главе).

В тех областях социологии и социальной психологии, которые имеют сравни­тельно развитую традицию экспериментальных исследований (межличностное и межгрупповое восприятие, исследования динамики установок, социальные процессы в малых группах, оценивание эффективности образовательных программ и т. д.) часто используют более сложные схемы экспериментирования, объединяемые термином «факторные эксперименты».

Факторный экспериментальный план включает в себя две и более, независи­мые переменные (именуемые также «факторами»), каждая из которых име­ет несколько уровней воздействия. Так как при увеличении числа независимых переменных очень быстро возрастает число групп, в каждой из которых приме­няется одна из возможных комбинаций этих переменных и их уровней[125](в пол­ном факторном плане число групп равно произведению числа уровней, задава­емых для каждой независимой переменной), в целях экономии ресурсов и ра­ционального распределения исследовательских усилий были разработаны многочисленные планы, где каждый из «уровней» переменных реализуется один раз, а обобщение и статистический анализ взаимодействия различных факто­ров и их изолированного и совместного влияния на зависимую переменную проводится на групповом уровне[126].

Всякий факторный эксперимент — это, в сущности, несколько экспериментов, объединенных в одном плане. Обобщенные данные факторного эксперимента позволяют ответить на два типа вопросов: 1) имеется ли эффект воздействия для каждой отдельно взятой независимой переменной; 2)зависит ли величина этого эффекта воздействия от величины значений других независимых пере­менных? Изолированный эффект воздействия одной независимой переменной называют главным эффектом, а изменение величины этого эффекта под влия­нием другой независимой переменной называют взаимодействием.

В таблице 4.2 представлен план простейшего факторного эксперимента «два на два» («2 X 2»), в котором изучалось влияние новизны и типа изображения на интерес, проявляемый к этому изображению 4-месячными младенцами. В ка­честве индикатора интереса использовалась длительность разглядывания. Каж­дая из независимых переменных была представлена только двумя уровнями: для новизны — новое или старое, предъявлявшееся в предыдущих сериях изоб­ражение; для типа изображения — геометрический контур либо схематическое изображение человеческого лица (схематические рисунки использовались для уравнивания изображений по визуальной сложности, так как время фиксации взора обычно зависит от сложности и количества деталей). Как видно из приве­денных в таблице 4.2 данных, налицо оба главных эффекта. Влияние новизны на интерес становится очевидным при сравнении средних по строкам — сред­няя длительность разглядывания изображений (и геометрических, и «физиономий») заметно выше в случае предъявления новых рисунков (55 сек против 20). Сравнение по столбцам показывает, что при усреднении данных по двум груп­пам (новые и старые рисунки) изображения человеческого лица вызывают зна­чительно больший интерес, проявляющийся в более длительном разглядыва­нии (45 сек). Налицо также взаимодействие между типом изображения и но­визной. Результаты предъявления разных типов изображений различны для «старой» и «новой» группы. Различаются и значения разностей по столбцам для каждой строки (60 -50 = 10 сравнительно с 30 -10 = 20), и соответствую­щие показатели по строкам (60 -30 = 30 сравнительно с 50 -10 = 40). Иными словами, большая привлекательность человеческих лиц сильнее проявляется при предъявлении старых рисунков (различие в 10 сек при предъявлении но­вых картинок увеличивается до 20 для старых изображений), а различие между предъявлением старых и новых рисунков при использовании геометрических контуров возрастало до 40 сек.

Таблица 4.2







Дата добавления: 2015-06-15; просмотров: 280. Нарушение авторских прав; Мы поможем в написании вашей работы!


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2021 год . (0.003 сек.) русская версия | украинская версия