Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример матрицы данных типа





«респонденты х переменные»


«Случай»   1-й респондент     2-й респондент   ……   2000-й респондент  
Переменная  
Пол мужской женский ……. мужской
Возраст 38 лет 23 года ……. 62 года
Семейный статус разведен замужем ……. вдовец
Судимость отсутствует отсутствует ……. 2 судимости
Партийная конституционный беспартийная ……. христианский
принадлежность демократ     социалист

 

Обычно единицами анализа, т. е. теми, кого исследуют, бывают именно люди. Однако единицами анализа могут быть и семьи, и организации, и регионы, и государства. Например, в матрице данных столбцы могли бы соответствовать городам, а строки — переменным типа «уровень пре­ступности», «население», «число безработных» и т. п. Некоторые из пе­ременных были бы получены путем агрегирования, «объединения», ин­дивидуальных данных (например, о наличии дополнительных источни­ков дохода), другие характеризовали бы город как целое (наличие аэропортов, доля прямых налоговых поступлений в бюджете). В любом случае исследователю нужно заранее представить себе, как будет выг­лядеть матрица данных и какие приемы анализа он собирается к ней применить. Любое конкретное исследование может предполагать и использование различных единиц анализа, т.е. полученная в нем эмпирическая инфор­мация может характеризовать и отдельных индивидов, и семьи, и — в результате использования агрегированных показателей — регионы или государства. Важно лишь, чтобы все единицы анализа, которые вы на­мерены использовать, были определены заранее. В ином случае в мат­рице данных «единица анализа х переменная» неизбежно возникнут про­пуски или дублирование одной и той же информации. Так как количе­ство матриц данных равно количеству предполагаемых единиц анализа (хотяразмерность их будет разной[129]), можно заранее создать соответствую­щее количество отдельных массивов данных (файлов), содержащих те данные, которые относятся к данной единице анализа. Скажем, сведения о возрасте по­падут в массив «респонденты», а сведения о составе семьи — в массив «семьи» (даже если последние и были получены в результате беседы с одним из членов семьи).

Описанная выше двумерная матрица данных типична для одномоментного, «срезового» исследования, характеризующего ситуацию в момент опроса. Целью такого исследования может быть, во-первых, описание распределения каких-то переменных в совокупности. Например, мы можем узнать, сколько человек со­бирается проголосовать за демократов при условии, что выборы будут проведе­ны тотчас же (типичный «гэллаповский» опрос). Во-вторых, мы можем попы­таться использовать «срезовые» данные для характеристики отдельных подвыборок — например, «работающих пенсионеров», «высококвалифицированных рабочих в возрасте от 30 до 45 лет» и т. п. Далее, применяя различные методы статистического анализа, можно проверить какие-то гипотезы о взаимосвязи переменных (в данный момент времени). В последнем случае исследование становится объяснительным. Однако даже в чисто описательном исследовании мы столкнемся с необходимостью каких-то сравнений, делающих полученные нами оценки осмысленными. Если, например, мы узнаем, что 15% подростков читают медицинские журналы не реже 1 раза в месяц, то для того, чтобы по­нять много это или мало, нам нужно будет с чем-то сопоставить этот показа­тель. Скажем, мы можем сравнить подростков 1994 года с подростками 1954 года. (Конечно, нам предварительно придется найти данные соответствующего оп­роса 40-летней давности.)

Изменениям во времени подвержены не только отдельные показатели, но и вза­имоотношения между переменными. Так, глобальные социально-экономичес­кие изменения — экономический кризис, сдвиг в социально-классовой струк­туре — могут привести к тому, что высокая зависимость дохода от продолжи­тельности образования станет незначимой. Следовательно, изучение сложного причинного механизма воздействия образовательного уровня на доходы требу­ет какой-то серии разделенных во времени обследований, позволяющих про­следить динамику интересующего нас отношения под влиянием существенных внешних переменных.

Исследовательские планы, позволяющие анализировать данные во временной перспективе, называют лонгитюдными. Данные получают многократно, в раз­ные моменты времени, причем цели исследования могут быть сугубо дескрип­тивными (доля голосующих за коммунистов, распределение положительных и отрицательных установок по отношению к «мыльным операм») и объяснитель­ными.

Принято выделять основные виды лонгитюдных планов, каждый из которых имеет множество модификаций и «переходных» форм. Это трендовые, когортные и панельные исследования.

Трендовые обследования ближе всего к уже описанным однократным, «срезовым», опросам. Некоторое авторы даже предлагают обозначать их просто как регулярные опросы, т. е. опросы, проводимые через более или менее равные промежутки времени[130]. В трендовом опросе одна и та же генеральная совокупность изучается в разные моменты времени, причем каждый раз выборка стро­ится заново. Иными словами, анализируются последовательные выборки из одной и той же совокупности. Например, опрос Института Гэллапа, проводи­мый ежемесячно в ходе избирательной компании, является трендовым обсле­дованием, показывающим динамику установок населения по отношению к кан­дидатам или партиям. Строго говоря, если количество тех, кто собирается голо­совать за кандидата X, за месяц увеличилось на 16%, мы можем лишь зафиксировать изменение картины предпочтений избирателей, но не можем наверняка утверждать, что определенная группа избирателей изменила свои предпочтения, так как в двух последовательных опросах мы имеем дело с раз­ными респондентами. Преимуществом оперативных трендовых исследований является возможность «привязки» наблюдаемых изменений к текущим собы­тиям — политическим скандалам, решениям правительственных органов, изменениям в финансово-экономической ситуации, — что облегчает их интерпре­тацию.

Однако, например, ежегодные исследования занятости и безработицы, прово­димые по этому плану, могут привести к трудно интерпретируемым результа­там. Если в результате двух таких исследований окажется, что социально-де­мографические характеристики людей, получающих пособие, почти не изме­нились, будет большой неосторожностью утверждать, что существует какая-то «типичная» группа людей, постоянно живущая на средства налогоплательщи­ков. Вполне вероятно, что большинство респондентов, охваченных первым оп­росом, уже нашли работу.

В качестве особого исследовательского плана иногда рассматривают когортные обследования. Основания для выделения этого плана несколько условны и связаны скорее с теоретической логикой интерпретации (а не сбора) данных. Если в трендовых исследованиях отбор каждый раз производится из общей со­вокупности — всех избирателей, всех семей и т.п., — то, исследуя «когорты» (от лат. cohors (cohortis) — подразделение, видовая группа), мы каждый раз про­изводим отбор из одной специфической совокупности, стремясь проследить пе­ремены в ее поведении, установках и т. п. Пусть, например, мы изучали ценно­стные ориентации десятиклассников в 1985 году, а в 1995 году нам захотелось снова опросить бывших десятиклассников, так как мы предполагаем, что их ценностные ориентации изменились с переходом в иную стадию жизненного цикла (создание собственной семьи, формирование профессиональной идентичности и т. п.). В этом случае мы будем работать с новой выборкой из пре­жней специфической совокупности, сравнивая представителей одной и той же «когорты» с десятилетним интервалом, а не десятиклассников 1985 года с деся­тиклассниками 1995 года (в последнем случае можно было бы говорить о трен­довом исследовании десятиклассников).

Самым совершенным воплощением идеи введения временной перспективы в исследовательский план является панельное обследование. Если вернуться к нашей структурированной матрице данных (см. табл. 5.1), то можно сказать, что панель — это прибавление к двумерной матрице еще одного измерения, превращающего ее в пределе в некий «параллелепипед» данных. Панельные ис­следования позволяют не только зафиксировать какие-то социальные измене­ния в установках, поведении и т. п., но и выявить причины и последствия этих изменений на микроуровне, т. е. на уровне отдельных индивидов. Если трендовое исследование показывает, что десятая часть потребителей, предпочитав­ших отечественные макароны, «переметнулась» к поклонникам спагетти, мы не можем точно определить, кто из респондентов изменил свои предпочтения и, следовательно, каковы общие характеристики «перебежчиков». Таким обра­зом, мы лишены возможности проверить, какие объяснительные переменные позволяют предсказывать динамику предпочтений на микроуровне.


 

 








Дата добавления: 2015-06-15; просмотров: 497. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия