Пример матрицы данных типа
«респонденты х переменные»
Обычно единицами анализа, т. е. теми, кого исследуют, бывают именно люди. Однако единицами анализа могут быть и семьи, и организации, и регионы, и государства. Например, в матрице данных столбцы могли бы соответствовать городам, а строки — переменным типа «уровень преступности», «население», «число безработных» и т. п. Некоторые из переменных были бы получены путем агрегирования, «объединения», индивидуальных данных (например, о наличии дополнительных источников дохода), другие характеризовали бы город как целое (наличие аэропортов, доля прямых налоговых поступлений в бюджете). В любом случае исследователю нужно заранее представить себе, как будет выглядеть матрица данных и какие приемы анализа он собирается к ней применить. Любое конкретное исследование может предполагать и использование различных единиц анализа, т.е. полученная в нем эмпирическая информация может характеризовать и отдельных индивидов, и семьи, и — в результате использования агрегированных показателей — регионы или государства. Важно лишь, чтобы все единицы анализа, которые вы намерены использовать, были определены заранее. В ином случае в матрице данных «единица анализа х переменная» неизбежно возникнут пропуски или дублирование одной и той же информации. Так как количество матриц данных равно количеству предполагаемых единиц анализа (хотяразмерность их будет разной[129]), можно заранее создать соответствующее количество отдельных массивов данных (файлов), содержащих те данные, которые относятся к данной единице анализа. Скажем, сведения о возрасте попадут в массив «респонденты», а сведения о составе семьи — в массив «семьи» (даже если последние и были получены в результате беседы с одним из членов семьи). Описанная выше двумерная матрица данных типична для одномоментного, «срезового» исследования, характеризующего ситуацию в момент опроса. Целью такого исследования может быть, во-первых, описание распределения каких-то переменных в совокупности. Например, мы можем узнать, сколько человек собирается проголосовать за демократов при условии, что выборы будут проведены тотчас же (типичный «гэллаповский» опрос). Во-вторых, мы можем попытаться использовать «срезовые» данные для характеристики отдельных подвыборок — например, «работающих пенсионеров», «высококвалифицированных рабочих в возрасте от 30 до 45 лет» и т. п. Далее, применяя различные методы статистического анализа, можно проверить какие-то гипотезы о взаимосвязи переменных (в данный момент времени). В последнем случае исследование становится объяснительным. Однако даже в чисто описательном исследовании мы столкнемся с необходимостью каких-то сравнений, делающих полученные нами оценки осмысленными. Если, например, мы узнаем, что 15% подростков читают медицинские журналы не реже 1 раза в месяц, то для того, чтобы понять много это или мало, нам нужно будет с чем-то сопоставить этот показатель. Скажем, мы можем сравнить подростков 1994 года с подростками 1954 года. (Конечно, нам предварительно придется найти данные соответствующего опроса 40-летней давности.) Изменениям во времени подвержены не только отдельные показатели, но и взаимоотношения между переменными. Так, глобальные социально-экономические изменения — экономический кризис, сдвиг в социально-классовой структуре — могут привести к тому, что высокая зависимость дохода от продолжительности образования станет незначимой. Следовательно, изучение сложного причинного механизма воздействия образовательного уровня на доходы требует какой-то серии разделенных во времени обследований, позволяющих проследить динамику интересующего нас отношения под влиянием существенных внешних переменных. Исследовательские планы, позволяющие анализировать данные во временной перспективе, называют лонгитюдными. Данные получают многократно, в разные моменты времени, причем цели исследования могут быть сугубо дескриптивными (доля голосующих за коммунистов, распределение положительных и отрицательных установок по отношению к «мыльным операм») и объяснительными. Принято выделять основные виды лонгитюдных планов, каждый из которых имеет множество модификаций и «переходных» форм. Это трендовые, когортные и панельные исследования. Трендовые обследования ближе всего к уже описанным однократным, «срезовым», опросам. Некоторое авторы даже предлагают обозначать их просто как регулярные опросы, т. е. опросы, проводимые через более или менее равные промежутки времени[130]. В трендовом опросе одна и та же генеральная совокупность изучается в разные моменты времени, причем каждый раз выборка строится заново. Иными словами, анализируются последовательные выборки из одной и той же совокупности. Например, опрос Института Гэллапа, проводимый ежемесячно в ходе избирательной компании, является трендовым обследованием, показывающим динамику установок населения по отношению к кандидатам или партиям. Строго говоря, если количество тех, кто собирается голосовать за кандидата X, за месяц увеличилось на 16%, мы можем лишь зафиксировать изменение картины предпочтений избирателей, но не можем наверняка утверждать, что определенная группа избирателей изменила свои предпочтения, так как в двух последовательных опросах мы имеем дело с разными респондентами. Преимуществом оперативных трендовых исследований является возможность «привязки» наблюдаемых изменений к текущим событиям — политическим скандалам, решениям правительственных органов, изменениям в финансово-экономической ситуации, — что облегчает их интерпретацию. Однако, например, ежегодные исследования занятости и безработицы, проводимые по этому плану, могут привести к трудно интерпретируемым результатам. Если в результате двух таких исследований окажется, что социально-демографические характеристики людей, получающих пособие, почти не изменились, будет большой неосторожностью утверждать, что существует какая-то «типичная» группа людей, постоянно живущая на средства налогоплательщиков. Вполне вероятно, что большинство респондентов, охваченных первым опросом, уже нашли работу. В качестве особого исследовательского плана иногда рассматривают когортные обследования. Основания для выделения этого плана несколько условны и связаны скорее с теоретической логикой интерпретации (а не сбора) данных. Если в трендовых исследованиях отбор каждый раз производится из общей совокупности — всех избирателей, всех семей и т.п., — то, исследуя «когорты» (от лат. cohors (cohortis) — подразделение, видовая группа), мы каждый раз производим отбор из одной специфической совокупности, стремясь проследить перемены в ее поведении, установках и т. п. Пусть, например, мы изучали ценностные ориентации десятиклассников в 1985 году, а в 1995 году нам захотелось снова опросить бывших десятиклассников, так как мы предполагаем, что их ценностные ориентации изменились с переходом в иную стадию жизненного цикла (создание собственной семьи, формирование профессиональной идентичности и т. п.). В этом случае мы будем работать с новой выборкой из прежней специфической совокупности, сравнивая представителей одной и той же «когорты» с десятилетним интервалом, а не десятиклассников 1985 года с десятиклассниками 1995 года (в последнем случае можно было бы говорить о трендовом исследовании десятиклассников). Самым совершенным воплощением идеи введения временной перспективы в исследовательский план является панельное обследование. Если вернуться к нашей структурированной матрице данных (см. табл. 5.1), то можно сказать, что панель — это прибавление к двумерной матрице еще одного измерения, превращающего ее в пределе в некий «параллелепипед» данных. Панельные исследования позволяют не только зафиксировать какие-то социальные изменения в установках, поведении и т. п., но и выявить причины и последствия этих изменений на микроуровне, т. е. на уровне отдельных индивидов. Если трендовое исследование показывает, что десятая часть потребителей, предпочитавших отечественные макароны, «переметнулась» к поклонникам спагетти, мы не можем точно определить, кто из респондентов изменил свои предпочтения и, следовательно, каковы общие характеристики «перебежчиков». Таким образом, мы лишены возможности проверить, какие объяснительные переменные позволяют предсказывать динамику предпочтений на микроуровне.
|