Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ 7 страница





Освоенные математические представления, логико-матема­тические средства и способы познания (эталоны, модели, речь, сравнение и др.) составляют первоначальный логико-математи­ческий опыт ребенка. Этот опыт является началом познания ок­ружающей действительности, первым вхождением в мир матема­тики.

Целью и результатом педагогического содействия математи­ческому развитию детей дошкольного возраста является разви­тие интеллектуально-творческих способностей детей через ос­воение ими логико-математических представлений и способов познания.

Задачи математического развития в дошкольном детстве оп­ределены с учетом закономерностей развития познавательных процессов и способностей детей дошкольного возраста, особен­ностей становления познавательной деятельности и развития личности ребенка в дошкольном детстве. Выполнение этих задач должно обеспечивать реализацию принципа преемственности в развитии и воспитании ребенка на дошкольной и начальной школьной ступенях образования.

Основными задачами математического развития детей до­школьного возраста являются:

• развитие у детей логико-математических представлений (представлений о математических свойствах и отношениях предметов, конкретных величинах, числах, геометрических фигурах, зависимостях и закономерностях);

• развитие сенсорных (предметно-действенных) способов по­знания математических свойств и отношений: обследование, сопоставление, группировка, упорядочение, разбиение;

• освоение детьми экспериментально-исследовательских спо­собов познания математического содержания (воссоздание, экспериментирование, моделирование, трансформация);

• развитие у детей логических способов познания математиче­ских свойств и отношений (анализ, абстрагирование, отрица­ние, сравнение, обобщение, классификация, сериация)';

• овладение детьми математическими способами познания дей­ствительности: счет, измерение, простейшие вычисления;

• развитие интеллектуально-творческих проявлений детей: на­ходчивости, смекалки, догадки, сообразительности, стремле­ния к поиску нестандартных решений задач;

• развитие точной, аргументированной и доказательной речи, обогащение словаря ребенка;

• развитие активности и инициативности детей;

• воспитание готовности к обучению в школе: развитие само­стоятельности, ответственности, настойчивости в преодолении трудностей, координации движений глаз и мелкой моторики рук, умений самоконтроля и самооценки.

Содержание математического развития детей дошкольного возраста определяется, наряду с целями и задачами, следующими важными факторами.

• Личностно-развивающая направленность содержания мате­матического развития дошкольников должна являться эффек­тивным средством развития интеллектуально-творческих спо­собностей ребенка и содействовать развитию важнейшего личностного качества — самостоятельности в решении интел­лектуальных задач.

• Направленность математического содержания, которое ос­ваивает ребенок в дошкольном возрасте, является социализи­рующей. Накопленный логико-математический опыт ребенка обязательно станет его значимым личностным приобретени­ем, если обеспечит ситуацию успеха в разных видах деятель­ности, требующих проявления интеллектуально-творческих способностей.

• Содержание математического развития дошкольников пропе-девтично. Осваиваемое ребенком содержание должно позво­лить ему на чувственном, а затем и логическом уровне познать некоторые стороны действительности и развить те структуры мышления, на основе которых впоследствии будут формиро­ваться основные математические понятия.

• Осваиваемое содержание должно соответствовать возрастным и индивидуальным возможностям дошкольников, быть ори­ентированным на зону их ближайшего развития.

В качестве основных структурных компонентов содержания математического развития дошкольников выступают логико-ма­тематические представления и способы познания, которые пред­ставлены в таблице 3 в порядке усложнения.

Реализация обозначенных задач возможна на адекватном им содержании. Первым и важнейшим компонентом содержания математического развития дошкольников являются свойства и отношения. Значимость и необходимость выделения этого ком­понента обусловлена прежде всего тем, что:

• математические понятия отражают определенные свойства действительности (число — количество, геометрическая фигу­ра — форму, протяженность в пространстве — длину и т.д.); движение к постижению математических понятий начинается с познания соответствующих свойств и отношений;

• умственные действия со свойствами и отношениями — до­ступное и эффективное средство логико-математического развития детей и их интеллектуально-творческих способно­стей.

В процессе разнообразных действий с предметами дети осваивают такие свойства, как форма, размер (протяженность в пространстве), количество, пространственное расположение, длительность и последовательность, масса. Первоначально в ре­зультате зрительного, осязательно-двигательного, тактильного обследования, сопоставления предметов дети обнаруживают и выделяют в предметах разные их свойства. Дети сравнивают от­дельные предметы и группы предметов по разным свойствам, упорядочивают объекты по разным основаниям (например, по возрастанию или убыванию их размера, емкости, тяжести и т. д.), разбивают совокупности на группы (классы) по признакам и свойствам. В процессе этих действий дошкольники обнаружи­вают отношения сходства (эквивалентности) по одному, двум и более свойствам и отношениям порядка. При этом они учатся оперировать «в уме» не с самим объектом, а с его свойствами (абстрагируют отдельные свойства от самого предмета и от его других, незначимых для решения задачи свойств). Таким обра­зом формируется важнейшая предпосылка абстрактного мыш­ления — способность к абстрагированию.

В процессе осуществления практических действий дети по­знают разнообразные геометрические фигуры и постепенно пере­ходят к группировке их по количеству углов, сторон, вершин. У детей развиваются конструктивные способности и пространст­венное мышление. Они осваивают умение мысленно поворачи­вать объект, смотреть на него с разных сторон, расчленять, соби­рать и видоизменять его.

 

В познании величин дети переходят от непосредственных (на­ложение, приложение, сравнение «на глаз») к опосредованным способам их сравнения (с помощью предмета-посредника и изме­рения условной меркой). Это дает возможность упорядочивать предметы по их свойствам (размеру, высоте, длине, толщине, массе и другим). Ребенок убеждается в том, что одни и те же свой­ства в разных объектах могут иметь как одинаковую, так и разную степень выраженности (равные или разные по толщине и т. д.).

Пространственно-временные представления (наиболее слож­ные для ребенка-дошкольника) осваиваются через реально пред­ставленные отношения (далеко — близко, сегодня — завтра). По­знание этих отношений осуществляется в процессе анализа реаль­ной жизненной обстановки, разрешения проблемных ситуаций, решения специально разработанных творческих задач и модели­рования.

Познание чисел и освоение действий с числами — важнейший компонент содержания математического развития. Посредством числа выражаются количество и величины. Оперируя только чис­лами, которые являются показателями количеств и величин объ­ектов окружающей действительности, сравнивая их, увеличивая, уменьшая, можно делать выводы о точном состоянии объектов действительности.

Ребенок-дошкольник постигает сущность числа и действие с числами на протяжении длительного периода. Первоначально ма­лыши выделяют один или два предмета, сравнивают практиче­ским путем два множества. В этот же период или несколько позже дети овладевают счетом. Счет является способом определения численности множеств и способом их опосредованного сравне-

но

ния. В процессе счета дети постигают число как показатель мощ­ности множества. Сосчитывая разные по размеру, пространствен­ному расположению предметы, дети приходят к пониманию неза­висимости числа от других свойств предметов и совокупности в целом. Знакомятся с цифрами, знаками для обозначения чисел.

Решая арифметические задачи, дети осваивают специальные приемы вычислительной деятельности, например присчитывание и отсчитывание по единице.

На основе сложившегося логико-математического опыта ре­бенку 5—6 лет становятся доступными познание связей, зависи­мостей объектов, закономерностей, оценка различных состояний и преобразований. Ребенок определяет порядок следования; на­ходит фигуру, пропущенную в ряду фигур; понимает и исправляет ошибки; поясняет неизменность или изменение состояния объек­тов, веществ; следует алгоритмам и составляет их самостоятельно.

 

3.2. Способы познания свойств и отношений в дошкольном возрасте

Основными способами познания таких свойств, как форма, размер и количество, которые ребенок осваивает уже в дошколь­ном возрасте, являются сравнение, сериация и классификация.

Познание формы, размера, количества в процессе сравнения

Сравнение — первый способ познания свойств и отношений, который осваивают дети дошкольного возраста и один из основ­ных логических приемов познания внешнего мира.

Познание любого предмета начинается с того, что мы его от­личаем от всех других и в то же время находим его сходство'с дру­гими объектами. В процессе установления различий выявляются свойства отдельных предметов или же их групп. Каждая группа свойств связана со специфическими познавательными действия­ми. Так, установление сходства и различий по цвету является ре­зультатом зрительного обследования объектов, по форме — зри­тельного и осязательно-двигательного обследований, по разме­ру — зрительного, тактильного, осязательно-двигательного обследований и измерения, по количеству — зрительного и так­тильного обследований счета.

В результате сравнения дети обнаруживают, что среди предме­тов, которые их окружают, есть разные, не похожие друг на друга, а есть одинаковые. Первоначально дети выделяют «сенсорные» различия, т. е. такие, которые делают предметы внешне не похо­жими друг на друга. Эта непохожесть может быть обусловлена цветом, формой, размером, пространственным расположением частей, вкусовыми, температурными, тактильными и другими свойствами. В процессе манипуляций с предметами дети откры­вают их свойства. Чем больше ребенок находит различий между объектами, тем больше свойств он обнаруживает и тем более диф­ференцированным становится его восприятие.

Постепенно ребенок открывает для себя, что не только от­дельные предметы могут быть похожими или не похожими по каким-либо признакам друг на друга, но и одна группа предметов может быть похожей на другую или отличаться от нее. Так, под­солнухи, яблоки, помидоры имеют круглую форму, а огурцы и кабачки — овальную. В результате развивается способность вы­делять свойство группы и сравнивать между собой группы пред­метов. Такая способность является необходимым условием для перехода к познанию существенных признаков предметов и яв­лений. Ребенок стремится найти такой признак, благодаря кото­рому один класс объектов отличается от другого (например, де­ревья — от кустов, автобусы — от троллейбусов, треугольники — от квадратов и т.д.).

Успешность познания количества и количественных отноше­ний групп предметов зависит от овладения приемами сравнения.

Сравнивать предметы можно «на глаз». Дети первоначально прибегают к этому самому простому, но не всегда результативно­му приему сравнения. Более эффективными являются приемы не­посредственного сравнения {наложение, приложение, соединение линиями) и опосредованного сравнения с помощью предмета-посред­ника. В основе этих приемов лежит установление взаимноодно­значного соответствия между элементами двух множеств. В ре­зультате практических или графических действий дети образуют пары из предметов разных групп. К более сложным и точным опосредованным приемам сравнения по количеству и размеру от­носятся счет и измерение условной меркой.

Одним из первых дети осваивают прием наложения. Этот прием позволяет обнаружить сходство и различие по количеству, размеру, форме, цвету и другим признакам. Для сравнения двух групп предметов по количеству каждый предмет одной группы дети поэлементно накладывают на предметы другой группы. Так, чтобы узнать, поровну ли конфет и печений, дети на каждое пече­нье накладывают по одной конфете. Для сравнения полосок по размеру (длине, ширине) одну полоску накладывают на другую, совмещая края полосок с одной стороны. Наложив одну геомет­рическую фигуру на другую (например, круг на квадрат), понима­ют, чем они отличаются друг от друга.

Приложение — более сложный прием сравнения. Сущность этого приема заключается в пространственном приближении срав­ниваемых предметов друг к другу (при этом изначально предметы пространственно разделены). В этом случае ребенку сложнее обна­ружить сходство или различие между группами предметов.

В ситуациях, когда сравниваемые предметы нельзя простран­ственно приблизить друг к другу, используются приемы соедине­ния их линиями или предметы-посредники. Соединение линиями применяется при сравнении групп предметов по количеству. На­пример, чтобы правильно ответить на вопрос: всем ли куклам сшили новые платья, нужно попарно соединить линиями рисунки кукол и платьев.

Сравнение с помощью предметов-посредников имеет место в случаях, когда вышеперечисленные приемы применить нельзя (сравниваемые предметы находятся на большом расстоянии и их нельзя перемещать). Для того чтобы узнать, одинаковые ли длины имеют стол воспитателя и детская кроватка в спальне, дети используют третий предмет — посредник (веревку, палку, ленту). Посредник должен быть длиннее обоих сравниваемых предметов или равным по длине большему предмету. Ребенок поочередно прикладывает предмет-посредник к сравниваемым протяженностям и фиксирует на нем карандашом или фломас-| ером длину каждого предмета. Затем он сравнивает «перенесен­ные» на предмет — посредник длины и делает вывод о том, что длиннее (стол воспитателя или детская кровать). Аналогично с помощью предмета-посредника сравнивается емкость сосудов.

При сравнении совокупностей предметов по количеству в ка­честве посредника используется третья совокупность предметов. Для того чтобы узнать, чего на участке больше — деревьев или кустарников, дети возле каждого дерева кладут по игрушке. Затем собирают их и заново раскладывают по одной возле каждого кус­тарника. Лишние игрушки «говорят» о том, что деревьев больше; недостаток игрушек — о том, что кустарников больше. Если возле каждого кустарника лежит игрушка, лишних игрушек нет, значит, деревьев и кустарников поровну.

Самые сложные способы сравнения, которыми овладевают дети дошкольного возраста, — это счет и измерение. Они относят­ся к опосредованным способам сравнения. При их использовании выводы об отношениях между сравниваемыми объектами делают­ся на основе сравнения чисел, выражающих размер или количе­ство объектов. Например, чтобы узнать, чего больше — яблок или груш, дети посредством счета определяют число яблок (например, 8 штук) и число груш (7 штук). Сравнивая полученные в результа­те счета числа (8 и 7), они устанавливают, что яблок больше на одно. Аналогичным образом дети определяют отношения между предметами по конкретным величинам с помощью измерения. Вывод о том, какой объект длиннее, короче, выше, ниже, тяжелее, легче и т. д., дети делают, сравнивая числа, которые выражают ре­зультаты измерений.

Таким образом, используя разные приемы сравнения, до­школьники познают свойства (форму, количество, размер), а также отношения равенства, подобия и порядка.

Сериация как способ познания размера, количества, чисел

Сериация (упорядочивание множества) осуществляется на ос­нове выявления некоторого признака предметов и их распреде­ления в соответствии с этим признаком. Сериационные ряды строятся в соответствии с правилами. Правило определяет, ко­торый элемент из двух (произвольно взятых) предшествует дру­гому элементу. Основными характеристиками упорядоченного ряда являются неизменность и равномерность направления на­растания (или убывания значения) признака, на основе которого строится ряд.

Например, если из двух объектов меньший всегда должен предшествовать большему, то множество упорядочивается в на­правлении от самого меньшего к самому большому элементу. Так, ленты раскладывают от самой короткой к самой длинной, чашки расставляют от самой низкой к самой высокой и т. д.

Сериация как способ познания свойств и отношений позво­ляет:

• выявить отношения порядка;

• установить последовательные взаимосвязи: каждый следующий объект больше предыдущего, каждый предыдущий — меньше следующего (или наоборот: каждый следующий объект меньше предыдущего, каждый предыдущий — больше следующего);

• установить взаимнообратные отношения: любой объект упо­рядоченного ряда больше предыдущего и меньше следующего (любой объект упорядоченного ряда меньше предыдущего и больше следующего);

• открыть закономерности следования и порядка.

Дети дошкольного возраста осваивают сериацию в процессе выстраивания по порядку конкретных предметов. Исходным ус­ловием для овладения сериацией является освоенность сравне­ния.

Для выполнения сериации необходимо:

• выявить основание сериации, т. е. выделить признак (кон­кретную величину), по которому необходимо упорядочить предметы (размер, длина, масса и пр.);

• определить направление ряда (по нарастанию или по убыва­нию величины);

• выбрать из всех имеющихся предметов (в соответствий с на­правлением ряда) начальный элемент (самый маленький или самый большой);

• для продолжения ряда каждый раз из оставшихся предметов выбирать самый маленький (большой).

Усложнение сериационных заданий обеспечивается путем:

• постепенного увеличения числа объектов, которые необходи­мо упорядочить;

• уменьшения величинных различий между соседними элемен­тами ряда;

• увеличением числа различительных признаков в предметах се­риации (что способствует развитию умения абстрагировать свойства не только от самих предметов, но и от других свойств).

В практике используются различные сериационные дидакти­ческие материалы: рамки-вкладыши, игрушки-вкладыши (мат­решки, кубы, бочонки и др.), сериационные наборы М. Монтес­сори для упорядочивания предметов по разным признакам (цвету, запаху, размеру, различным протяженностям и др.).

Палочки Кюизенера (цветные числа) и цветные полоски, по­строенные по такому же принципу, различаются не только дли­ной, но и цветом. При этом все палочки одинаковой длины имеют одинаковый цвет. Количество палочек в наборе таково, что позво­ляет строить два разнонаправленных ряда: один — по нарастанию длины, другой — по убыванию. Чтобы построить ряд, ребенку всегда необходимо абстрагировать длину от более сильного в плане непосредственного восприятия свойства — цвета палочки.

Дети осваивают сериацию через систему следующих игровых упражнений:

• построение сериационного ряда по образцу;

• продолжение начатого ряда;

• построение сериационных рядов по правилу с заданными крайними элементами;

• построение рядов по правилу от начальной точки;

• построение по правилу с самостоятельным определением на­чальной точки ряда;

• построение ряда от любого элемента;

• поиск пропущенных элементов ряда.

Первые упражнения (первый шаг в освоении сериации) долж­ны помочь детям выделить основание сериации, т. е. тот признак, по которому можно упорядочивать, и осознать неизменность на­правления нарастания (или убывания) значения признака предме­тов. Материал для этих упражнений может быть самым разнооб­разным, но при подборе предметов должны соблюдаться следу­ющие условия:

• предметы сначала различаются только упорядочиваемыми свойствами (высотой, длиной, яркостью цвета, размером и т. д.), затем — дополнительными свойствами (разные по вы­соте и цвету, по цвету и форме);

• количество предметов равно трем.

Первые сериационные задания дети выполняют по образцу, ко­торым является готовый сериационный ряд. Образец демонстриру­ет, значение какого признака и в каком направлении меняется. Ре­бенку необходимо выделить этот признак, направление его измене­ния и соответственно построить такой же ряд из других предметов. В рамках-вкладышах образцом сериационного ряда являются от­верстия для вкладывания предметов (квадратов разного размера, цилиндров разного диаметра, силуэтов елок разной высоты и др.).

Предметы, которые упорядочивает сам ребенок, должны обя­зательно отличаться от предметов в образце. К примеру, если об­разец — ряд матрешек разного размера, то ребенок упорядочивает новые платья для них; если образец — ряд чашек, то ребенок упо­рядочивает блюдца и т. д. Такой подбор предметов способствует абстрагированию признака (основания сериации) от самих пред­метов.

Сначала дети строят сериационные ряды по нарастанию при­знака. В первую очередь используются дидактические наборы без дополнительных различительных признаков (рамки-вкладыши, игрушки-вкладыши, предметы быта, игрушки, фигуры), затем — с дополнительными признаками различия (палочки Кюизенера, цветные полоски и др.). По ходу совместных игровых упражнений взрослый побуждает детей рассказывать о порядке действий. Какую полоску нужно положить сначала, чтобы получилась ле­сенка (ответ — самую короткую)? Какая полоска будет следующей (ответ — немного длиннее)? Какая полоска будет последней (от­вет — самая длинная)?

В следующих упражнениях (второй шаг в освоении сериации) число упорядочиваемых предметов увеличивается до пяти.

Дети строят ряды как по нарастанию величины, так и по ее убы­ванию. Используются разнообразные упражнения на построение рядов: по образцу, с заданными крайними элементами, от заданной начальной точки (первый предмет ряда находится перед детьми), продолжение начатого ряда. Взрослый помогает детям усвоить пра­вило выбора предмета для построения ряда: каждый раз из остав­шихся предметов нужно выбирать самый маленький (короткий, низкий, тонкий и т. п.) или самый большой (длинный, высокий, толстый и т. п.).

В упражнениях на построение рядов с заданными крайними точ­ками обозначается только начало и конец ряда. Например: лесенка, в которой только две дощечки: первая, самая длинная, и последняя, самая короткая; первый, самый высокий, и последний, самый низ­кий, ребенок в ряду; самая маленькая и самая большая планета и др. Дети определяют направление ряда и достраивают его.

Затем дети строят ряды по правилу от заданной начальной точки, которая может находиться и в середине ряда. В таких уп­ражнениях ребенку сложнее выделить направление ряда. Выпол­нение подобных упражнений позволяет детям успешно перейти к самостоятельному построению всего ряда, т. е. самостоятельно определить направление ряда, правильно найти первый предмет ряда и построить его до конца.

Дети исправляют ошибки как в готовых реальных рядах, так и в нарисованных картинках. В таких рядах отдельные предметы находятся не на своем месте. Задача ребенка — обнаружить ошиб­ку и исправить ряд. В результате подобных упражнений дети прочнее осваивают свойства ряда: неизменность направления и равномерность нарастания (убывания) ряда.

Дети анализируют как готовые, так и самостоятельно постро­енные ряды. Например, в построенных рядах дети находят все предметы, которые меньше указанного предмета, и все, которые больше его. Такие задания помогают дошкольникам подготовить­ся к построению рядов от любых их элементов.

В дальнейшем дети упорядочивают до 10 и более предметов в ряду (третий шаг в освоении сериации). Строят сериационные ряды из палочек Кюизенера и цветных полосок как по нараста­нию, так и по убыванию значений одного и более признаков. Каж­дый построенный ряд анализируют с целью выявления относи­тельности величины. Для этого взрослый предлагает ребенку вы­брать любой предмет ряда и сравнить его с предметами, расположенными слева и справа.

На этом этапе дети упорядочивают предметы от любого эле­мента ряда, что является очень сложной задачей. Для ее решения требуется:

• выделить сразу два направления построения ряда (одну часть ряда нужно строить по нарастанию признака, другую — по его убыванию);

• разделить все предметы на две группы (те, которые больше, чем образец, и те, которые меньше образца);

• построить одну часть ряда (по нарастанию или же по убыва­нию значения признака), затем — другую (в обратном направ­лении изменения значения признака).

В процессе таких упражнений развивается способность «дви­гаться по ряду» в двух направлениях. В результате ребенок лучше осознает относительность признака и выделяет транзитивность как свойство отношения порядка (если розовая палочка длиннее белой, а синяя длиннее розовой, то синяя длиннее белой).

Усложняются упражнения на исправление неправильных рядов реальных предметов или их изображений на картинках. Теперь в неправильных рядах единичные элементы пропущены в разных местах ряда или отсутствуют 2—3 элемента, непосредственно сле­дующие друг за другом. Дети исправляют ошибки в рядах: находят пропущенные элементы.

С помощью полочек Кюизенера дети начинают упорядочи­вать числа. Величина каждого числа наглядно представлена дли­ной палочки (самая короткая (1 см) — число 1, длиннее (2 см) — число 2, еще длиннее (3 см) — число 3 и т. д.). Цвет также вы­полняет функцию обозначения конкретного числа (белый — число 1, розовый — число 2, голубой — число 3, красный — число 4 и т. д.).

Дети исследуют упорядоченные ряды цветных палочек и уста­навливают, что:

• каждая следующая палочка длиннее предшествующей на одну белую палочку;

• каждая предшествующая палочка короче следующей за ней на одну белую палочку.

В результате таких действий формируется представление о том, что каждое следующее число в натуральном ряду чисел на 1 больше предшествующего и, наоборот, каждое предшествующее число на 1 меньше непосредственно следующего за ним числа.

Исправления деформированных рядов палочек Кюизенера (с перестановкой рядом стоящих палочек, с пропущенными па­лочками) развивают у детей представление о числе.

В результате последовательных разнообразных упражнений дошкольники осваивают сериацию как способ познания свойств (размера, количества, чисел). С помощью этого способа они от­крывают отношение порядка, познают свойства упорядоченного множества, упорядочивают объекты по разным величинам, гото­вятся к решению сложных задач, в основе которых лежит отноше­ние порядка.

Классификация как способ познания свойств и отношений

Классификация — один из важнейших способов познания ок­ружающей действительности. В ее основе лежит разбиение. Раз­биение является логическим действием, суть которого состоит в разбивке непустого множества на непересекающиеся и полностью покрывающие его подмножества. Образованные подмножества именуются классами. При этом в каждый класс входит хотя бы один элемент множества и ни один из элементов множества не может входить сразу в два или более классов. Классификация — распределение элементов множества по классам. В процессе клас­сификации выявляются и устанавливаются отношения эквива­лентности по определенным свойствам. Классификация позволя­ет познать общие характеристические свойства классов и отноше­ния между классами.

Познание свойств групп и отношений между группами в процессе классификации предметов по признакам

Классификация по признакам — сложное умственное дейст­вие, которое включает:

• выделение оснований классификации (общих признаков предметов), по которым будет производиться разбиение;

• распределение объектов с разными свойствами в разные классы;

• объединение объектов с одинаковыми (тождественными) свойствами в одно целое (класс).

Первым шагом в освоении детьми классификации является об­разование групп предметов, т. е. выделение из совокупности пред­метов тех, которые обладают одинаковыми свойствами, и объеди­нение их в группу. Например, из множества геометрических фигур дети выбирают все круглые фигуры (и образуют из них группу), из множества игрушек — все маленькие игрушки и т. д. В процессе разнообразных упражнений по образованию групп предметов на основе разных свойств и называния общего свойства группы у детей развивается способность к обобщению. Сначала дети осваи­вают умение образовывать группы на основе одного свойства (все желтые фигурки), затем на основе двух, трех и более свойств (все красные квадратные фигуры, все большие треугольные синие фи­гуры и т. д.). Чем больше отличительных свойств имеют объекты, тем больше активизируется способность ребенка к абстрагирова­нию, т. е. к отличению значимых для решения задачи свойств от остальных. Чтобы выделить из логических блоков группу по одно­му свойству, ребенок должен отличить это свойство от остальных трех. Так, чтобы образовать группу всех квадратных блоков, ему нужно абстрагировать форму от цвета, размера и толщины блока и собрать вместе все квадраты (синие, желтые, красные, большие и маленькие, толстые и тонкие). В результате упражнений на об­разование групп дети осваивают умение объединять вместе объек­ты с одинаковыми свойствами и выделять общее свойство группы.

Вторым шагом в освоении детьми классификации является распределение предметов с разными свойствами в разные группы. В игровых упражнениях и игровых обучающих ситуациях взрос­лый задает основание и указывает общие свойства каждой группы. Например, перед детьми — три ведерка (красное, желтое, синее). Нужно разложить все игрушки по цвету: в красное ведерко со­брать все красные игрушки, в желтое — все желтые, в синее — все синие. В другом игровом упражнении детям предлагают 3 боль­шие фигуры, серединку цветка (круг, квадрат, треугольник) и много таких же маленьких фигур — лепестков. Нужно собрать цветы — вокруг каждой большой фигуры (серединки цветка) вы­ложить такие же по форме маленькие фигуры. В приведенных уп­ражнениях общие свойства каждой группы обозначаются с помо­щью цвета ведер и форм больших фигур. Общее свойство каждой группы взрослый может обозначить по-разному, например сло­вом или знаком. При выполнении этих упражнений важно, чтобы дети называли не только общие свойства групп (все круглые, все квадратные, все треугольные), но и основания распределения предметов по группам (разложили по форме, по размеру и т. д.), а также число полученных групп (разделили фигуры по форме и по­лучили 3 группы: круглые, квадратные и треугольные фигуры).







Дата добавления: 2015-06-15; просмотров: 1030. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия