Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЧЕТЫРЕ ВАЖНЕЙШИХ ОГРАНИЧЕНИЯ КВАЛИФИКАЦИИ ПЕРВИЧНЫХ СОЦИАЛЬ­НЫХ ХАРАКТЕРИСТИК





 

Мы рассмотрели различные приемы перевода каче­ственных социальных признаков в их количественные выражения. Это очень ответственный момент процеду­ры социологических исследований.

Применение количественных методов и использова­ние статистических показателей взаимосвязи соци­альных явлений и процессов как бы возводит социоло­гию в ранг подлинной "строгой" науки. Создается впе­чатление математической точности выводов. Между тем квантификация сложных и далеко не однозначных социальных реалий накладывает немало ограничений на собственно математические операции с их измерения­ми. Математик работает с простыми однозначными аб­стракциями, в основе которых суждение "есть— нет" (т. е. наличие—отсутствие данного свойства). Социолог обязан постоянно помнить, что в действительности скрывается за величинами и символами, которыми мы оперируем.

В данном случае, мы обращаем внимание только на некоторые ограничения, связанные со специфическим видом формализации социальных данных, имея в виду наиболее распространенные и сравнительно простые приемы использования математической статистики в социологии.

Первое ограничение — соразмерность количествен­ных показателей, фиксированных разными шкалами в рамках одного исследования.

Суммируем сведения о возможностях операций с числами в описанных выше шкалах (схема 14)16

16 Здесь частично используется схема из работы С. С. Паповяпа [201. С. 60].

 

Более сильная шкала отличается от ближайшей к ней относительно слабой тем, что допускает более ши­рокий диапазон математических операций с числами. Все, что допустимо для слабой шкалы, допустимо и для сильной. Но не все, разрешимое для сильной, позволи­тельно для слабой шкалы. Поэтому смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал: в этом случае все операции с числами должны удовлетво­рять требованиям, предъявляемым к относительно сла­бым шкалам.

Конечно, это предостережение теряет смысл, если социолог не намерен статистически сопоставлять данные, измеренные разными шкалами, и рассматри­вает их независимо друг от друга, а также в случае иных способов анализа, например, путем множествен­ной классификации.

Второе общее ограничение связано с формой распре­деления величины фиксированных описанными выше шкалами, которое предполагается нормальным.

На рис. 8 показаны варианты нормального и ско­шенного распределений, где нормальное (эталонное) обозначено пунктиром, а скошенное — сплошной лини­ей. Нормальное гауссово распределение имеет вид сим­метричного колокола, у скошенного же по сравнению с нормальным в нашем случае поднят" правый и "опу­щен" левый конец (так называемые хвосты распределе­ния). Для нормального распределения оценки меры рас­сеяния совпадают, т. е. М=Ме=Мо, а в скошенном "хво­сты" распределения не влияют на среднюю арифмети­ческую (М, другое часто встречающееся обозначение средней арифметической — х), которая сдвигается в сторону его больших значений.

Возможны и бимодальные распределения, где обра­зуются своего рода горбы, а также растянутые, как бы сплющенные. Анализ таких видов распределений дол­жен быть особенно внимательным, так как в этом слу­чае непригодны обычные оценки меры рассеяния.

В случае существенно скошенных и тем более бимодаль­ных распределений можно:

(а) привести их к нормальному путем объединения града­ций шкалы, образующих длинный "хвост" распределения. На­пример, значения 8,9 и 10 десятибалльной шкалы растянуты потому, что в них очень мало численности. Тогда объединим эти градации и соответственно переоценим пункты шкалы;

(б) при бимодальном распределении разумно порядковую шкалу перевести в неупорядоченную.

Итак, второе ограничение — особенности одномер­ных (не говоря уже о более сложных) распределений. Оно заключается в том, что необходимо внимательно изучать форму распределения с точки зрения его укло­нения от нормального, симметричного.

Третье ограничение особенно неприятно. Оно состо­ит в том, что в социальных процессах нередки явления, измерение которых следует производить шкалами от­крытого типа, где полюс наибольших значений не фик­сирован и может принимать любую величину. 17

17 На это указал С. Д. Хайтун [277]. См. также работу Г. Кинмбл [110].

 

Например, оценки размеров заработной платы, дохо­дов в принципе должны давать нормальные и вполне допустимые скошенные распределения, так как есть со­циально и экономически обоснованные минимум и мак­симум зарплаты. Это — закрытая метрическая шкала оценок. То же самое можно сказать о численности де­тей в семье и т. п. явлениях.

Но при оценке многих субъективных состояний и по­казателей человеческой активности, например, результа­тов научной продуктивности ученых, предельно макси­мальные значения трудно предположить достоверно.

В негауссовых, в частности, так называемых распре­делениях Ципфа (рис. 9, в котором фиксированы лога­рифмы координат), на примере оценки числа публика­ций ученых в области химии [278. С. 146] видно, что до 70% из них имеют одну публикацию, около 25% — две, 8—10% — по три или четыре публикации, но только по 0,1 и 0,2% достигают продуктивности в 20—30 публикациях.

Это распределение никоим образом не описывается гауссовым "колоколом", В последнем случае числен­ность имеющих очень мало и очень много публикаций была бы примерно равной, а большинство ученых демон стрировали бы некоторое среднее число публикаций, на­пример, по 7—8 (в гауссовой статистике — это различные показатели центральной тенденции распределения).

 

 

Однако применение негауссовых статистик в соци­альных науках вообще, в социологии в частности, крайне затруднительно, так как невозможно использовать закры­тые шкалы, поскольку в большинстве случаев нет "есте­ственных" эталонов измерения (число публикаций — один из примеров такого "естественного" эталона).

А если нам приходится изобретать шкалу, то недо­пустимо оставлять открытым один из ее полюсов.

Четвертое ограничение связано с особой природой со­циальных процессов, в которых статистические и детерминистские закономерности находятся в динамическом единстве. В определенных аспектах и на определенных от­резках времени социальные процессы вполне предсказуемы. Но во многих случаях это далеко не так, особенно в условиях социальных преобразований, кризисов социальных систем. В нестабильных системах малые внешние или внутренние воз­действия способны вызвать неожиданное и неадекватное воздействию изменение.

Поэтому предлагается, используя для измерения первич­ных характеристик шкальные процедуры, прибегать к пост­роению стохастических динамических моделей на основе "сценариев" возможного развития определенных социаль­ных процессов [289]. Такие сценарии прогнозируются для разных временных интервалов, например начальной и завер­шающей стадий, которые могут быть существенно разными по составу участвующих факторов и по характеру связей между ними.

Итак, преимущества квантификации и использования жестких критериев надежности исходных данных небезус­ловны и могут обернуться упрощением, а то и искажением социальной реальности.18

18 На почве резкой критики жестко формальных процедур сбора и анализа данных в начале 70-х гг. в социологии возникло движение сторонников гибких или качественных методов с акцентом на понима­нии событий и жизни людей в большей мере, чем стремления к их строгому объяснению (см. гл. 6).

 

Адекватные в исследовании массо-видных социальных процессов, такие приемы утрачивают свои достоинства в изучении сознательно организованных действий или "отклоняющихся" явлений, тогда как нередко именно последние дают пищу для вдумчивого социального анализа. Без таких "уклонений" социальные процессы отоб­ражаются и виде схем, лишенных жизненных красок.

Строго формализованный количественный анализ име­ет свои пределы (298)19, за которыми могут быть утраче­ны качество, глубина и полнота осмысления действитель­ности.

19 "Пределы" — так называлась статья выдающегося отечественного социолога В. Н. Шубкина, который в 70-е гг. призвал к "гуманистической социологии", акцентирующей внимание на личностных смыслах социальных явлений и процессов.

 

Поэтому социолог обязан хорошо владеть многооб­разными гибкими методами изучения общественных проблем, т. е. уметь наблюдать, строить гипотезы на основе несистематизированных впечатлений и бесед, переходя за­тем к более систематизированной и упорядоченной их про­верке.

Практические советы

1. Приступая к разработке методов и проце­дур исследования, вначале продумайте, какие яв­ления, свойства и объекты реально варьируют по их интенсивности, распространенности, состояни­ям выраженности, а какие могут быть фиксиро­ваны лишь в качественных отображениях.

2. Определяя способ квантификации (тип шкалы), соизмеряйте его не только с природой объекта, но и с целями исследования и возможно­стями последующего количественного анализа: излишняя квантификация — напрасная растрата усилий, недостаточная — упущенные возможнос­ти более обстоятельного изучения объекта.

3. Не забывайте, что всегда лучше опираться на достоверные и менее детальные сведения, чем на детальные и малодостоверные: отсюда — ука­зания к выбору приемлемого типа шкал и дроб­ности их метрики.

4. Изящный статистический анализ полу­ченных данных будет вводить в заблуждение и нас самих и других, если ему не предшествовала добротная проверка надежности исходных изме­рений и регистрации фактов в целом.

5. Самое же главное состоит в том, что коли­чественный анализ не самоцель, но лишь сред­ство качественного: качественный анализ пред­шествует квантификации, качественным анали­зом завершается изучение количественных рас­пределений и связей.

 







Дата добавления: 2015-06-16; просмотров: 350. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия