Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование графика функции





Преобразование графика функции

Преобразования графиков функций — это линейные преобразования функции y = f(x) или её аргумента x к виду y = af(kx + b) + m, а также преобразование с использованием модуля.

Общий вид функции Преобразования
y = f(x - b) Параллельный перенос графика вдоль оси абсцисс на | b | единиц
  • вправо, если b > 0;
  • влево, если b < 0.
y = f(x + b)
  • влево, если b > 0;
  • вправо, если b < 0.
y = f(x) + m Параллельный перенос графика вдоль оси ординат на | m | единиц
  • вверх, если m > 0,
  • вниз, если m < 0.
  Отражение графика
y = f(- x) Симметричное отражение графика относительно оси ординат.
y = - f(x) Симметричное отражение графика относительно оси абсцисс.
  Сжатие и растяжение графика
y = f(kx)
  • При k > 1 — сжатие графика к оси ординат в k раз (уменьшаем абсциссы точек графика в раз, оставляя ординаты без изменения)
  • при 0 < k < 1 — растяжение графика от оси ординат в k раз (увеличиваем абсциссы точек графика в раз, оставляя ординаты без изменения).
y = kf(x)
  • При k > 1 — растяжение графика от оси абсцисс в k раз (умножаем ординаты на ),
  • при 0 < k < 1 — cжатие графика к оси абсцисс в k раз (умножаем ординаты на ).
  Преобразования графика с модулем
y = | f(x) |
  • При f(x) > 0 — график остаётся без изменений,
  • при f(x) < 0 — график симметрично отражается относительно оси абсцисс.
y = f(| x |)
  • При x 0 — график остаётся без изменений,
  • при x < 0 — график симметрично отражается относительно оси ординат.






Дата добавления: 2015-03-11; просмотров: 470. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия