Принцип эквивалентности сил тяготения и инерции Эйнштейна формулируется следующим образом: ускорение системы отсчета эквивалентно возникновению сил тяготения
Гравитационная масса тела точно равна его инерционной массе (входящие, соответственно, в законы всемирного тяготения и во II закон Ньютона). Это экспериментальный факт, обусловленный, очевидно, наличием бесконечного числа тел во Вселенной. Согласно ОТО гравитация обусловлена искривлением четырехмерного пространства-времени вблизи массивных тел. При этом другие тела реагируют на искривление пространства-времени как на наличие в нем потенциальной ямы и "притягиваются" к телу, создавшему это искривление. Кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g, то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Именно на основе принципа эквивалентности масс был обобщен принцип относительности, утверждающий в общей теории относительности инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных.
2) Из ОТО был получен ряд важных выводов: 1. Свойства пространства-времени зависят от движущейся материи. 2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения. В частности, такое искривление должен испытывать луч, проходящий возле Солнца. Этот эффект, как писал Эйнштейн, можно обнаружить при наблюдении положения звезд во время солнечного затмения. В 1919 г. научные экспедиции Лондонского Королевского общества, направленные для изучения солнечного затмения подтвердили правильность этого утверждения. (Эйнштейн писал Планку: «Судьба оказала мне милость, позволив дожить до этого дня».) 3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений. В результате этого эффекта линии солнечного спектра должны смещаться в сторону красного цвета, по сравнению со спектрами соответствующих земных источников. Эффект замедления времени. Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца - достаточно небольшой звезды по космическим меркам - влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала ничего нет. Замедление вблизи Солнца составляет около 0,0002 с. Одно из самых фантастических предсказаний общей теории относительности - полная остановка времени в очень сильном поле тяготения. Замедление времени тем больше, чем сильнее тяготение. Замедление времени проявляется в гравитационном красном смещении света: чем сильнее тяготение, тем больше увеличивается длина волны и уменьшается его частота. При определенных условиях длина волны может устремиться к бесконечности, а ее частота - к нулю. Со светом, испускаемым Солнцем, это могло бы случится, если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (действительный радиус Солнца равен 700 000 км). Из-за такого сжатия сила тяготения на поверхности, откуда и исходит свет, возрастает на столько, что красное гравитационное смещение окажется действительно бесконечным. Радиус такой поверхности называется гравитационным радиусом. С нашим Солнцем этого никогда на самом деле не произойдет. Но другие звезды, массы которых в три и более раз превышают массу Солнца, в конце своей жизни и действительно испытывают, скорее всего, быстрое катастрофическое сжатие под действием своего собственного тяготения. Это приведет их к состоянию черной дыры. Черная дыра - это физическое тело, создающее столь сильное тяготение, что красное смещение для света, испускаемого вблизи него, способно обратиться в бесконечность. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи так называемых нейтронных звезд, а вблизи черной дыры, у ее гравитационного радиуса, оно столь велико, что время там как бы замирает. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигнет его. В этом проявляется замедление времени вблизи черной дыры. Таким образом, материя влияет на свойства пространства и времени.
|