КОНСТРУКЦИЯ ТЕПЛОПРОВОДОВ
В общем случае теплопровод состоит из трех основных элементов: 1) рабочего трубопровода, по которому транспортируется теплоноситель и который в современных условиях обычно выполняется из стальных труб, соединенных между собой с помощью сварки; 2) изоляционной конструкции, предназначенной для защиты наружной поверхности стального трубопровода от коррозии и теплопровода в целом от тепловых потерь; 3) Несущей конструкции, воспринимающей весовую нагрузку теплопровода и другие усилия, возникающие при его работе, а также разгружающей стальной трубопровод и его изоляционную конструкцию от нагрузки окружающей среды (веса грунта, движущегося наземного транспорта, ветра и т.д.). В зависимости от используемых материалов изоляционная конструкция теплопровода может выполняться как в виде одного элемента, так и в виде нескольких последовательно соединенных элементов, например нескольких наложенных друг на друга слоев изоляции, каждый из которых выполняет отдельную задачу (антикоррозионную защиту, тепловую защиту, защиту изоляции от влаги). Современные теплопроводы должны удовлетворять следующим основным требованиям: 1) надежная прочность и герметичность трубопроводов и установленной на них арматуры при ожидаемых в эксплуатационных условиях давлениях и температурах теплоносителя; 2) высокое и устойчивое в эксплуатационных условиях тепло- и электросопротивление, а также низкие воздухопроницаемость и водопоглощение изоляционной конструкции; 3) индустриальность и сборность; возможность изготовления в заводских условиях всех основных элементов теплопровода, укрупненных до пределов, определяемых типом и мощностью подъемно-транспортных средств; сборка теплопроводов на трассе из готовых элементов; 4) возможность механизации всех трудоемких процессов строительства и монтажа; 5) ремонтопригодность, т.е. возможность быстрого обнаружения причин возникновения отказов или повреждений и устранение их и их последствий путем про ведения ремонта в заданное время; б) экономичность при строительстве и эксплуатации. Все подземные теплопроводы работают в условиях высокой влажности и повышенной температуры окружающей среды, т.е. в условиях весьма благоприятных для коррозии металлических сооружений. Поэтому важнейшим элементом является изоляционная конструкция, назначение которой не только защита теплопровода от тепловых потерь, но и защита трубопровода от наружной коррозии. Высокое тепловое сопротивление изоляционной конструкции, что означает низкий коэффициент теплопроводности изоляционного слоя, необходимо для снижения тепловых потерь теплопровода. Требование низкого влагопоглощения также связано с задачей снижения тепловых потерь, так как при увлажнении изоляционного слоя повышается его теплопроводность и возрастают тепловые потери. Наружная поверхность стальных подземных трубопроводов подвержена воздействию электрохимической и электрической коррозии. Основным агентом, вызывающим коррозию подземных теплопроводов, является кислород, растворенный во влаге, поступающей из окружающего грунта через изоляцию к поверхности трубы. Процесс коррозии интенсифицируется при наличии во влаге, поступающей из грунта, или в изоляционном слое, через который проходит влага, агрессивных веществ: диоксида углерода (СО2) сульфатов (SО4) или хлоридов (С1). Другим источником поступления кислорода к наружной поверхности стального трубопровода является воздух. Обогащая влагу кислородом, воздух интенсифицирует коррозию. Поэтому для защиты наружной поверхности стальных трубопроводов от электрохимической коррозии необходимо обеспечить не только низкое водопоглощение, но и низкую воздухопроницаемость изоляционной конструкции. В том случае, когда изоляционный слой выполнен из пористого материала, например минеральной ваты, пенобетона, битумоперлита и др., необходимо защитить его от внешней влаги и воздуха наружным покрытием из материала с низким водопоглощением и низкой воздухопроницаемостью, например из полиэтилена или изола. Основной метод защиты подземных теплопроводов от электрохимической коррозии заключается в выполнении изоляционного слоя из материала с высоким влаго и электросопротивлением. Из современных антикоррозионных покрытий наиболее надежным и долговечным при температуре теплоносителя до 200°С является стеклоэмалевое покрытие, выполняемое из рекомендованных Всероссийским научно-исследовательским институтом строительства трубопроводов (ВНИИСТ) силикатных эмалей 105Т и 64/64, накладываемых на предварительно очищенную поверхность стальных труб. Источниками электрической коррозии стальных подземных теплопроводов обычно служат установки постоянного тока, например электрифицированные железные дороги и трамваи, с рельсовых путей которых электрический ток стекает в землю. В анодных зонах, где ток стекает с металлических трубопроводов в грунт, происходит разрушение трубопроводов. Соотношение между током, текущим по рельсам, и блуждающим током определяется соотношением электрических сопротивлений рельсов и системы почва—подземные сооружения. Для ограничения натекания блуждающих токов на подземные теплопроводы могут быть использованы разные методы или их комбинации, в том числе: 1) создание высокого электрического сопротивления между металлическим трубопроводом и окружающей средой на всем его протяжении (выполнение теплоизоляционной конструкции из материала с высоким электрическим сопротивлением или наложение на наружную поверхность трубопровода покровного слоя, имеющего высокое электросопротивление); 2) увеличение переходного электрического сопротивления на границе рельсы — грунт (укладка рельсовых путей на основание из битумизированного гравия, имеющего повышенное электросопротивление); 3) повышение электрического сопротивления грунта вокруг теплопровода; 4) повышение продольного электрического сопротивления теплопровода путем его электрического секционирования (установка электроизолирующих прокладок между фланцами и электроизолирующих футляров на болтах в местах соединения отдельных секций трубопроводов); 5) увеличение продольной электропроводности рельсового пути посредством установки электропроводящих перемычек между отдельными звеньями рельсов в местах их стыковки.
2.1 Подземные теплопроводы.
Все конструкции подземных теплопроводов можно разделить на две группы: канальные и бесканальные. В канальных теплопроводах изоляционная конструкция разгружена от внешних нагрузок грунта стенками канала. В бесканальных теплопроводах изоляционная конструкция испытывает нагрузку грунта. Каналы сооружаются проходными и непроходными. Большинство каналов для теплопроводов сооружается из сборных железобетонных элементов. Из всех подземных теплопроводов наиболее надежными, зато и наиболее дорогими по начальным затратам являются теплопроводы в проходных каналах. Основное преимущество проходных каналов — постоянный доступ к трубопроводам. Проходные каналы позволяют заменять и добавлять трубопроводы, проводить ревизию, ремонт и ликвидацию аварий на трубопроводах без разрушения дорожных покрытий и разрытия мостовых. Проходные каналы применяются обычно на выводах от теплоэлектроцентралей и на основных магистралях промплощадок крупных предприятий. В последнем случае в общем проходном канале прокладываются все трубопроводы производственного на значения (паропроводы, водоводы, трубопроводы сжатого воздуха). В крупных городах целесообразно сооружать проходные каналы (коллекторы) под основными проездами до устройства на этих проездах усовершенствованных дорожных покрытий. В таких коллекторах прокладывается большинство подземных городских коммуникаций: теплопроводы, водопроводы, силовые и осветительные кабели, кабели связи и др. (рис. 9.3 ксерокопии). Габаритные размеры проходных каналов выбирают из условия обеспечения достаточного прохода для обслуживающего персонала и свободного доступа ко всем элементам оборудования, требующим постоянного обслуживания (задвижки, сальниковые компенсаторы, дренажные устройства и т.п.). Проходные каналы должны быть оборудованы естественной вентиляцией для поддержания температуры воздуха не выше 30°с, электрическим освещением низкого напряжения (до 30 В), устройством для быстрого отвода воды из канала. В тех случаях, когда количество параллельно прокладываемых трубопроводов не велико (два-четыре), но постоянный доступ к ним необходим, например при пересечении автомагистралей с усовершенствованными покрытиями, теплопроводы сооружаются в полупроходных каналах (рис. 9.4 ксерокопии). Габаритные размеры полупроходных каналов выбирают из условия прохода по ним человека в полусогнутом состоянии. Высота в свету полупроходных каналов выбирается не менее 1400 мм. По удобству обслуживания полупроходные каналы значительно уступают проходным. В полупроходных каналах можно проводить осмотр трубопроводов и мелкий ремонт тепловой изоляции при выведенной из работы тепловой сети. Выполнять серьезный ремонт, связанный со слесарными и сварочными работами, в полупроходных каналах невозможно. Большинство теплопроводов прокладывается в непроходных каналах или бесканально. Теплопроводы в непроходных каналах. Каналы собираются из унифицированных железобетонных элементов разных размеров (рис. 9.5 ксерокопии). Для надежной и долговечной работы теплопровода необходима защита канала от поступления в него грунтовых или поверхностных вод. Как правило, нижнее основание канала должно быть выше максимального уровня грунтовых вод. Для защиты от поверхностных вод наружная поверхность канала (стены и перекрытия) покрывается оклеечной гидроизоляцией из битумных материалов. При прокладке теплопроводов ниже максимального уровня грунтовых вод сооружаются попутные дренажи, снижающие местный уровень грунтовых вод по трассе теплопровода ниже его основания. Основное преимущество теплопровода с воздушным зазором по сравнению бесканальным заключается в создании благо приятных условий для высыхания тепловой изоляции. В процессе охлаждения воздуха у верхнего перекрытия поверхности наружной стенки из него выпадает влага, которая в виде капель стекает со стен канала на его дно. Для защиты изоляционной конструкции теплопровода от капельной влаги, выпадающей на перекрытии рекомендуется устанавливать поверхность верхнего перекрытия с поперечным наклоном к горизонту. Угол наклона для железобетонных перекрытий может быть принят равным 4—8°. В каналах с воздушным зазором изоляционный слой может выполняться в виде подвесной или монолитной конструкции. Она состоит из трех основных элементов: а) антикоррозийного защитного слоя в виде наложенных в заводских условиях на стальной трубопровод нескольких слоев эмали или изола, имеющих достаточную механическую прочность и обладающих высоким электросопротивлением и необходимой температуростойкостью; б) теплоизоляционного слоя, выполненного из материала с низким коэффициентом теплопроводности, например минеральной ваты или пеностекла, в виде мягких матов или твердых блоков, укладываемых поверх защитного антикоррозионного слоя; в) защитного механического покрытия в виде металлической сетки, выполняющей роль несущей конструкции для теплоизоляционного слоя. Для увеличения долговечности теплопровода несущая конструкция подвесной изоляции (вязальная проволока или металлическая сетка) покрывается сверху оболочкой из некорродирующих материалов или асбоцементной штукатуркой. Бесканальные теплопроводы. Бесканальные теплопроводы применяются в том случае, когда они по надежности и долговечности не уступают теплопроводам в непроходных каналах и даже превосходят их, являясь более экономичными по начальной стоимости и трудозатратам на сооружение и эксплуатацию. Все конструкции бесканальных теплопроводов можно разделить на три группы: 1. в монолитных оболочках, 2. засыпные, 3. литые. Требования к изоляционным конструкциям бесканальных теплопроводов такие же, как и к изоляционной конструкции теплопроводов в каналах, а именно высокое и устойчивое в эксплуатационных условиях тепло-, влаго-, воздухо- и электросопротивление. Бесканальные теплопроводы в монолитных оболочках. В этих теплопроводах на стальной трубопровод наложена в заводских условиях оболочка, совмещающая тепло- и гидроизоляционные конструкции. Звенья таких элементов теплопровода длиной до 12 м доставляются с завода на место строительства, где выполняется их укладка в подготовленную траншею, стыковая сварка отдельных звеньев между собой и накладка изоляционных слоев на стыковое соединение. Принципиально теплопроводы с монолитной изоляцией могут применяться не только бесканально, но и в каналах. Современным требованиям к надежности и долговечности достаточно полно удовлетворяют теплопроводы с монолитной теплоизоляцией из ячеистого полимерного материала типа пенополиуретана с замкнутыми порами и интегральной структурой, выполненной методом формования на стальной трубе в полиэтиленовой оболочке (типа «труба в трубе»). Особенность интегральной структуры теплогидроизоляционной конструкции заключается в том, что отдельные слои материала распределены по плотности в соответствии с их функциональным назначением. Периферийные слои изоляционного материала, прилегающие к наружной поверхности стальной трубы и к внутренней поверхности полиэтиленовой оболочки, имеют более высокую плотность и прочность, а средний слой, выполняющий основные теплоизоляционные функции, имеет меньшую плотность, но и более низкую теплопроводность. Средняя теплопроводность пенополиуретановой теплоизоляции составляет в зависимости от плотности материала 0,0З— 0,05 Вт/(м2*К), что примерно втрое ниже теплопроводности большинства широко применяемых теплоизоляционных материалов для тепловых сетей (минеральная вата, армопенобетон, битумоперлит и др.). Благодаря высокому тепло- и электросопротивлению и низким воздухопроницаемости и влагопоглощению наружной полиэтиленовой оболочки, создающей дополнительную гидроизоляционную защиту, теплогидроизоляционная конструкция защищает теплопровод не только от тепловых потерь, но и от наружной коррозии. На рис. 9.7 (ксерокопии) показан разрез двухтрубного бесканального теплопровода в монолитных оболочках. Другая модификация индустриальных конструкций бесканальных теплопроводов в монолитных оболочках, имеющих адгезию к поверхности трубы, — теплопроводы с оболочками из фенольного поропласта марки ФЛ. Слой изоляции накладывается на трубопроводы из предварительно подготовленной композиции способом литья в форму. После отвердения слоя изоляции на ее поверхность укладывается влаго- и воздухозащитное покрытие из полиэтилена, армированного стеклотканью. В сухом состоянии, а также при низкой влажности фенольный поропласт является высокоэффективным теплоизоляционным материалом при ρ = 100 кг/м3 и относительной объемной влажности 30 % l = 0,05 Вт/(м*К)]. Основной недостаток поропласта марки ФЛ как изоляционного материала — его гидрофильность, т.е. способность поглощать влагу. Наряду с конструкциями бесканальных теплопроводов с монолитными оболочками, имеющими адгезию к поверхности стальных трубопроводов, сооружаются так же теплопроводы с монолитными оболочками без адгезии к поверхности трубопроводов. При тепловой деформации таких теплопроводов стальной трубопровод перемещается внутри изоляционной оболочки. Это обстоятельство при длительной работе теплопровода может привести к образованию зазора между трубой и изоляционной оболочкой, а при поступлении через зазор влаги и воздуха — к развитию коррозионных процессов на наружной поверхности трубы. Поэтому в конструкциях бесканальных теплопроводов в монолитных оболочках без адгезии к стальному трубопроводу необходимо наружную поверхность стальных труб защищать от коррозии, например путем эмалирования, алюминирования и применения других материалов с высокими антикоррозионными и диэлектрическими свойствами. Одним из типов индустриальных бесканальных теплопроводов в монооболочках без адгезии к наружной поверхности трубы (при диаметрах трубопроводов 400 мм и менее) является теплопровод в битумоперлитной изоляции (рис. 9.9 ксерокопии) Битумоперлит, битумокерамзит и другие аналогичные изоляционные материалы на битумном вяжущем обладают существенными технологическими преимуществами, которые позволяют сравнительно просто индустриализировать изготовление монолитных оболочек на трубопроводах. Но наряду с этим указанная технология изготовления оболочек нуждается в улучшении для обеспечения равномерной плотности и гомогенности битумоперлитной массы как по периметру трубы, так и по ее длине. Кроме того, битумоперлитная изоляция, как и многие другие материалы на битумном вяжущем, при длительном прогреве при температуре 150°С теряет водостойкость из-за потери легких фракций, что приводит к снижению антикоррозионной стойкости этих теплопроводов. Для повышения антикоррозионной стойкости битумоперлита в процессе изготовления горячей формовочной массы вводят полимерные добавки в портландцемент, что повышает температуростойкость, влагостойкость, прочность и долговечность конструкции.
|