Эксцесс
Итак, мы рассмотрели три из четырех групп показателей, с помощью которых описываются распределения численностей. Последней из них является группа показателей островершинности, или эксцесса. Для вычисления одного из возможных показателей эксцесса используется следующая формула: . Величина эксцесса для нормальной (гауссовой) кривой распределения, играющей в статистике, так же как и в теории вероятностей большую роль, равна 3. Исходя из целого ряда соображений заостренность этой кривой принимают за стандарт, и поэтому в качестве показателя эксцесса используют величину γ=Ех - 3. Эксцесс может принимать очень большие значения,, но он не может быть меньше единицы. Оказывается, что если распределение двувершинно (бимодально), то значение эксцесса близко к единице, так что γ близко к -2. Экспериментально установлено, что если значение γ меньше -1,4, то можно быть уверенным, что имеющееся в нашем распоряжении распределение по крайней мере бимодально. Это особенно важно учитывать, когда эспериментальные данные, минуя стадию предварительной обработки, анализируются с помощью ЭВМ и перед глазами исследователя нет графического изображения распределения численностей.
|