Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 2. Чтобы гарантировать v > 0, прибавим ко всем элементам матрицы Н константу +1





Решить игру

.

Чтобы гарантировать v > 0, прибавим ко всем элементам матрицы Н константу +1. Тогда получим матрицу

.

Пара двойственных задач линейного программирования будет в данном случае выглядеть следующим образом:

Минимизировать

при условиях

Максимизировать

при условиях

После применения симплексного метода получим оптимальное решение второй задачи:

Отсюда

Таким образом, оптимальная стратегия игрока II есть

Оптимальное решение первой задачи:

откуда

и

Итак,

Пример 3

Пусть ежедневный спрос на булочки в магазине задается следующим распределением вероятностей:

спрос          
Вероятность спроса 0.20 0.25 0.30 0.15 0.10

Магазин закупает булочки по 2.5 руб. и продает по 4.9 руб. за штуку. Если булочка не продана в тот же день, то она реализовывается по 1.5 руб. Какое наибольшее число булочек необходимо заказывать ежедневно, если величина заказа может принимать одно из возможных значений спроса?

Прибыль от продажи «свежей» булочки составляет 4.9–2.5=2.4 руб.

Потеря от продажи «черствой» составляет 2.5–1.5=1 руб.

Представим модель данной задачи в виде игры магазина со спросом. Стратегия магазина – ежедневный объем заказа, при этом спрос может принимать одно из своих возможных значений. Составим платежную матрицу игры для магазина:

Заказ магазина Возможный ежедневный спрос Ожид. прибыль
         
             
  240-50          
  240-100 360-50       369.5
  240-150 360-100 480-50      
  240-200 360-150 480-100 600-50    

На пересечении строки с некоторым объемом заказа и столбца с возможным спросом находится элемент aij – ожидаемая прибыль магазина в этой ситуации. В последней колонке вычислена ожидаемая (средняя) прибыль в случае распределения вероятностей спроса в соответствии с условиями примера. Например, для третьей строки имеем 140*0.2+310*0.25+480*0.3+480*0.15+480*0.1=369.5. Кстати, выбор этой стратегии (ежедневный заказ – 200 булочек) и будет оптимальным, т.к. обеспечивает максимальную прибыль (правило Байеса).

 

Тесты
1. Платежной матрицей называется матрица, элементами которой являются:

а) годовые прибыли отраслевых предприятий;

б) выигрыши, соответствующие стратегиям игроков;

в) налоговые платежи предприятий.

2. Возможно ли привести матричную игру к задаче линейного программирования:

а) возможно;

б) невозможно;

в) возможно, если платежная матрица единичная.

3. Матричная игра это:

а) игра двух лиц с несовпадающими интересами (неантагонистическая);

б) игра двух лиц с противоположными интересами;

в) игра многих (более двух) лиц.

4. Биматричная игра это:

а) игра двух лиц с несовпадающими интересами;

б) игра двух лиц с противоположными интересами;

в) игра многих (более двух) лиц.

5. Чистые стратегии игры соответствуют:

а) однозначно принимаемым решениям;

б) решениям, принимаемым с определенной вероятностью;

в) произвольным решениям.

6. Смешанные стратегии игры соответствуют:

а) однозначно принимаемым решениям;

б) решениям, принимаемым с определенной вероятностью;

в) произвольным решениям.

7. Всегда ли матричная игра имеет решение?

а) да, в чистых стратегиях;

б) да, в смешанных стратегиях;

в) не всегда.

8. В чем заключается задача теории игр?

а) обеспечить минимальный средний выигрыш;

б) выявление оптимальных стратегий игроков;

в) выявление стратегий игроков;

г) содержание п.п.а-в;

д) содержимое п.п. а,б.

9. Какие классы состязательных задач Вы знаете?

а) когда с полной определенностью можно считать действия конкурента (выбор или метод, которым он пользуется при выборе своих действий) известными заранее;

б) выбор, сделанный конкурентом, не известен точно, но его можно предсказать с некоторой ошибкой. Следовательно, существует риск ошибиться, ибо выбор, произведенный конкурентами, точно не известен;

в) заранее ничего не известно о действительном или вероятном поведении конкурента. Такая ситуация возникает перед руководством промышленной фирмы при оценке реакции конкурентов в случае подготовки выпуска на рынок совершенно новой продукции;

г) заранее ничего не известно о действительном или вероятном поведении конкурента при составлении планов войны против предполагаемого противника, когда не известны ни место, ни время ее вспышки;

д) все вышеназванное.

10. Где эффективно используется теория состязаний?

а) в промышленности для разработки тактики торгов;

б) для разработки политики цен;

в) для разработки стратегии рекламы;

г) для выбора момента выпуска новых товаров на рынок;

д) все вышеназванное.

 

Ответы к тестам

1) б 6) б
2) а 7) б
3) б 8) б
4) а 9) б
5) а 10) д

Контрольные вопросы

1. Назовите виды игр и приведите их определения.

2. Как составляется платежная матрица?

3. Как определить верхнюю и нижнюю цену игры? Что такое седловая точка игры?

4. Что означает решение игры в смешанных стратегиях.

5. Каковы основные термины и определение теории игр?

6. Определите и запишите антагонистическую матричную игру.

7. Каков принцип минимакса?

8. Когда следует использовать смешанные стратегии и как их найти?

9. Понятие и примеры матричных антагонистических игр с нулевой суммой.

10. Задача определения оптимальной смешанной стратегии в антагонистической матричной игре с нулевой суммой и её экономическая интерпретация.

11. Понятие и экономическая интерпретация цены игры. Определение цены матричной антагонистической игры с нулевой суммой.

12. Оптимальные смешанные стратегии: понятие, причины использования, приёмы практической реализации.

13. Подготовка исходных данных для анализа матричной антагонистической игры с нулевой суммой в целях подготовки управленческого решения.







Дата добавления: 2015-04-16; просмотров: 563. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия