Радиоволны
Радиоволны Основная статья: Радиоизлучение Из-за больших значений λ распространение радиоволн можно рассматривать без учёта атомистического строения среды. Исключение составляют только самые короткие радиоволны, примыкающие к инфракрасному участку спектра. В радиодиапазоне слабо сказываются и квантовые свойства излучения, хотя их всё же приходится учитывать, в частности, при описании квантовых генераторов и усилителей сантиметрового и миллиметрового диапазонов, а также молекулярных стандартов частоты и времени, при охлаждении аппаратуры до температур в несколько кельвинов. Радиоволны возникают при протекании по проводникам переменного тока соответствующей частоты. И наоборот, проходящая в пространстве электромагнитная волна возбуждает в проводнике соответствующий ей переменный ток. Это свойство используется в радиотехнике при конструировании антенн. Естественным источником волн этого диапазона являются грозы. Считается, что они же являются источником стоячих электромагнитных волн Шумана. Микроволно́вое излуче́ние, Сверхвысокочасто́тное излуче́ние (СВЧ-излучение) — электромагнитное излучение, включающее в себя дециметровый, сантиметровый и миллиметровый диапазон радиоволн (от 1 м — частота 300 МГц до 1 мм — 300 ГГц). Однако границы между инфракрасным, терагерцовым, микроволновым излучением и ультравысокочастотными радиоволнами приблизительны и могут определяться по-разному. Микроволновое излучение большой интенсивности используется для бесконтактного нагрева тел (как в бытовых, так и в промышленных микроволновых печах для термообработки металлов), основным элементом в которых служит магнетрон, а также для радиолокации. Микроволновое излучение малой интенсивности используется в средствах связи, преимущественно портативных — рациях, сотовых телефонах (кроме первых поколений), устройствах Bluetooth, WiFi и WiMAX. Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм). Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50% излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приемниками, а также специальными фотоматериалами[2]. Сейчас весь диапазон инфракрасного излучения делят на три составляющих: коротковолновая область: λ = 0,74—2,5 мкм; средневолновая область: λ = 2,5—50 мкм; длинноволновая область: λ = 50—2000 мкм; Видимое излучение — электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок[1][2] спектра с длиной волны приблизительно от 380 (фиолетовый) до 740 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).[3] Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра. В спектре содержатся не все цвета, которые различает человеческий мозг. Таких оттенков, как розовый или маджента, нет в спектре видимого излучения, они образуются от смешения других цветов. Видимое излучение также попадает в «оптическое окно», область спектра электромагнитного излучения, практически не поглощаемая земной атмосферой. Чистый воздух рассеивает голубой свет несколько сильнее, чем свет с большими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым. Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9·1014 — 3·1016 Герц). Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны — < 5·10−3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны с высокой энергией. Считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно. Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (см. Изомерный переход, энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение). Вопрос 20. Свет — электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» — ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 740 нанометров, что соответствует частотам от 790 до 405 терагерц, соответственно.
|