Устойчивость нелинейных систем автоматического управления. – Яну
Автоматическая система управления является нелинейной, если хотя бы один ее элемент описывается нелинейным уравнением. Практически все реальные системы управления содержат один или несколько нелинейных элементов. Нелинейной характеристикой часто обладает и объект управления. Так, например, все электрические машины имеют нелинейную и неоднозначную зависимость магнитного потока от тока возбуждения. Индуктивности обмоток машины также зависят от токов. Некоторые нелинейные элементы вводят в систему преднамеренно, чтобы улучшить качество управления. Такими нелинейностями являются, например, релейные управляющие устройства, обеспечивающие высокое быстродействие процесса управления. Применяются также нелинейные корректирующие устройства.
Нелинейную САУ можно представить в виде соединения двух частей (рис. 8.1, а) – линейной части (ЛЧ), описываемой линейными обыкновенными дифференциальными уравнениями с постоянными коэффициентами, и нелинейного элемента (НЭ). Нелинейный элемент является безынерционным, и его входная и выходная величины связаны между собой нелинейными алгебраическими уравнениями. Если система содержит несколько нелинейных элементов, то ее в ряде случаев можно свести к рассматриваемому классу, заменив нелинейные элементы одним с результирующей статической характеристикой. Например, при параллельном, последовательном и встречно-параллельном соединении такая замена возможна. На рис. 8.1, б показана замена двух параллельно соединенных нелинейных звеньев со статическими характеристиками 1 и 2 одним звеном с характеристикой 3, полученной суммированием исходных характеристик по оси ординат. Различают два вида нелинейных элементов: существенно нелинейные и несущественно нелинейные. Нелинейность считается несущественной, если ее замена линейным элементом не изменяет принципиальных особенностей системы и процессы в линеаризованной системе качественно не отличаются от процессов в реальной системе. Если такая замена невозможна, и процессы в линеаризованной и реальной системах сильно отличаются, то нелинейность является существенной. Главная особенность существенно нелинейных систем заключается в том, что они не подчиняются принципу наложения, а форма и показатели переходного процесса зависят от величины и формы внешнего воздействия. Другой важной особенностью динамики существенно нелинейных систем является зависимость условий устойчивости от величины внешнего воздействия. В связи с этим для нелинейных систем применяют понятия "устойчивость в малом", "устойчивость в большом", "устойчивость в целом". Система устойчива в малом, если она устойчива только при малых начальных отклонениях. Система устойчива в большом, если она устойчива при больших начальных отклонениях. Система устойчива в целом, если она устойчива при любых отклонениях. Специфической особенностью существенно нелинейных систем является также режим автоколебаний. Автоколебания – это устойчивые собственные колебания, возникающие из-за нелинейных свойств системы. Режим автоколебаний нелинейной системы принципиально отличается от колебаний линейной системы на границе устойчивости. В линейной системе при малейшем изменении ее параметров колебательный процесс становится либо затухающим, либо расходящимся. Автоколебания же являются устойчивым режимом и малые изменения параметров не приводят к их исчезновению. Автоколебания в общем случае нежелательны, однако, в некоторых нелинейных системах они являются основным рабочим режимом. Рассмотрим в качестве примера нелинейной системы автоматическую систему стабилизации напряжения с нелинейным управляющим устройством (рис. 8.2, а). Стабильное напряжение на сопротивлении поддерживается регулирующим транзистором , работающим в ключевом режиме. Для сглаживания пульсаций тока и напряжения последовательно с нагрузкой включен LC-фильтр с нулевым диодом . Управляющим устройством является триггер Шмитта, характеристика "вход-выход" которого приведена на рис. 8.2, б и имеет форму петли гистерезиса. На вход триггера Шмитта поступает разность задающего напряжения и напряжения обратной связи . При достижении разности этих напряжений пороговых значений переключения триггера и последний изменяет состояние на своем выходе и через узел гальванической развязки переключает регулирующий транзистор поочередно в режимы отсечки и насыщения. Форма выходного напряжения системы стабилизации показана на рис. 8.2, в. Размах пульсаций выходного напряжения определяется шириной зоны гистерезиса релейного элемента – триггера Шмитта.
Нелинейная часть САУ образована одним нелинейным элементом (рис. 8.1, а), выходная величина которого может быть выражена как функция входной величины и ее производной :
Простейшими нелинейными элементами являются статические нелинейности. У них выходная величина зависит от входной величины, причем эта зависимость строго однозначна. Примерами статических нелинейностей являются характеристики, показанные на рис. 8.3, а, б. У динамических нелинейностей выходная величина зависит как от входной величины, так и от ее производной (рис. 8.3, в). Характеристика динамической нелинейности всегда неоднозначна. Рассмотренные статические и динамические нелинейности относятся к классу нелинейностей с кусочно-линейными характеристиками.
В управляющих устройствах, наряду с релейными элементами, часто используются так называемые особые нелинейности: множительное звено, элементы с переменной структурой, элементы логического типа. Для улучшения качества систем применяются управляющие устройства с переменной структурой, в которых специальный блок изменения структуры может включать в основной контур системы звенья с различными динамическими свойствами.
|