Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Асимметричные криптосистемы шифрования. У. Диффи и М. Хеллман сформулировали требования, выполнение которых обеспечивает безопасность асимметричной криптосистемы





У. Диффи и М. Хеллман сформулировали требования, выполнение которых обеспечивает безопасность асимметричной криптосистемы.
1. Вычисление пары ключей (Кв, кв) получателем В должно быть простым.
2. Отправитель А, зная открытый ключ Кв и сообщение М, может легко вычислить криптограмму С = ЕКв (М).
3. Получатель В, используя секретный ключ кв и криптограмму С, может легко восстановить исходное сообщение М = Окя (С).
4. Противник, зная открытый ключ Кв, при попытке вычислить секретный ключ кв наталкивается на непреодолимую вычислительную проблему.
5. Противник, зная пару (Кв, С), при попытке вычислить исходное сообщение М наталкивается на непреодолимую вычислительную проблему.

Концепция асимметричных криптографических систем с открытым ключом основана на применении однонаправленных функций. Однонаправленной функцией называется функция F(X), обладающая двумя свойствами:
• существует алгоритм вычисления значений функции Y= F(X);
• не существует эффективного алгоритма обращения (инвертирования) функции F (т. е. не существует решения уравнения F(X) = Y относительно X).

В качестве примера однонаправленной функции можно указать целочисленное умножение. Прямая задача — вычисление произведения двух очень больших целых чисел Р и Q, т. е. нахождение значения N = P × Q — относительно несложная задача для компьютера.

Обратная задача — факторизация, или разложение на множители большого целого числа, т. е. нахождение делителей Р и Q большого целого числа N = Р × Q, — является практически неразрешимой при достаточно больших значениях N.

Другой характерный пример однонаправленной функции — это модульная экспонента с фиксированными основанием и модулем.

Как и в случае симметричных криптографических систем, с помощью асимметричных криптосистем обеспечивается не только конфиденциальность, но также подлинность и целостность передаваемой информации. Подлинность и целостность любого сообщения обеспечивается формированием цифровой подписи этого сообщения и отправкой в зашифрованном виде сообщения вместе с цифровой подписью. Проверка соответствия подписи полученному сообщению после его предварительного расшифровывания представляет собой проверку целостности и подлинности принятого сообщения. Процедуры формирования и проверки электронной цифровой подписи рассмотрены в разделе «Электронная цифровая подпись и функция хэширования».

Преимущества асимметричных криптографических систем перед симметричными криптосистемами:
• в асимметричных криптосистемах решена сложная проблема распределения ключей между пользователями, так как каждый пользователь может сгенерировать свою пару ключей сам, а открытые ключи пользователей могут свободно публиковаться и распространяться по сетевым коммуникациям;
• исчезает квадратичная зависимость числа ключей от числа пользователей; в асимметричной криптосистеме число используемых ключей связано с числом абонентов линейной зависимостью (в системе из N пользователей используются 2N ключей), а не квадратичной, как в симметричных системах;
• асимметричные криптосистемы позволяют реализовать протоколы взаимодействия сторон, которые не доверяют друг другу, поскольку при использовании асимметричных криптосистем закрытый ключ должен быть известен только его владельцу.

Недостатки асимметричных криптосистем:

• на настоящий момент нет математического доказательства необратимости используемых в асимметричных алгоритмах функций;
• асимметричное шифрование существенно медленнее симметричного, поскольку при шифровании и расшифровке используются весьма ресурсоемкие операции. По этой же причине реализовать аппаратный шифратор с асимметричным алгоритмом существенно сложнее, чем реализовать аппаратно симметричный алгоритм;
• необходимость защиты открытых ключей от подмены.







Дата добавления: 2015-08-17; просмотров: 836. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия