Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скорректированный индекс детерминации (корреляции).





В рассмотренных показателях множественной корреляции (индекс и коэффициент) используется остаточная дисперсия, которая имеет систематическую ошибку в сторону преуменьшения, тем более значительную, чем больше параметров определяется в уравнении регрессии при заданном объеме п. Таким образом, чем больше параметров при х, тем ближе остаточная дисперсия к нулю и, тем ближе коэффициент (индекс) корреляции приблизится к единице даже при слабой связи фактора с результатом. Для того, чтобы не допускать возможного преувеличения тесноты связи, используется скорректированный индекс (коэффициент) множественной корреляции.

Скорректированный индекс множественной корреляции содержит поправку на число степеней свободы, а именно: остаточная сумма квадратов делится на число степеней свободы остаточной вариации, а общая сумма квадратов делится на число степеней свободы в целом по совокупности

(5.2.11)

Поскольку , то величину скорректированного индекса детерминации можно представить в виде

(5.2.12)

Чем больше т, тем сильнее различия между и R2.

Для линейной зависимости признаков скорректированный коэффициент множественной корреляции определяется как корень квадратный из скорректированного коэффициента детерминации. Отличие состоит лишь в том, что в линейной регрессии под т понимают число факторов, включенных в модель, а в криволинейной зависимости т – число параметров при х и их преобразованиях (х2, loq x и др.). Так, для функции

y = a + b1x1 + c1x21+ b2x2 + c2x22 m = 4.

При заданном объеме наблюдений с увеличением числа факторов скорректированный коэффициент множественной детерминации убывает Его величина может стать и отрицательной при слабых связях результата с факторами, в этом случае он должен считаться равным нулю. Чем больше объем совокупности, тем ближе значения и R2.

В статистических пакетах прикладных программ в процедуре множественной регрессии обычно приводится скорректированный коэффициент (индекс) корреляции (детерминации). Величина коэффициента детерминации применяется для оценки качества модели. Низкое значение показателя означает, что в модель не включены существенные факторы – с одной стороны, а с другой – форма связи не отражает реальные соотношения между переменными. Требуется дальнейшая работа по улучшению качества модели.







Дата добавления: 2015-08-17; просмотров: 2241. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия