Частные F- тесты
Достоверность уравнения множественной регрессии в целом, как и парной, оценивается с помощью критерия Фишера (5.2.16) где Wобщ.=п×σу 2; Wрегр.= Wобщ×R2;; Wост..= Wобщ×(1-R2)= Wобщ.- Wрегр Оценивается также значимость не только уравнения в целом, но и фактора, дополнительно включенного в регрессионную модель. Необходимость такой оценки связана с тем, что не каждый фактор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативного признака. Мерой для оценки включения фактора в модель служит частный критерий Фишера. Частный F - критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора с остаточной дисперсией на одну степень свободы по регрессионной модели, включающей полный набор факторов (5.2.17) Так как прирост факторной суммы квадратов отклонений обусловлен дополнительным включением в модель одного исследуемого фактора, то число степеней свободы для него равно dfx1 = 1. Для остаточного объема вариации число степеней свободы dfост = n-m-1. Соотношение числа степеней свободы приведено в формуле частного F-критерия в виде дроби . Дисперсионный анализ такой модели отличается от анализа, проводимого нами ранее. Источник вариации «регрессия» раскладывается здесь на две составляющие: 1) обусловленная влиянием фактора х1; 2) обусловленная дополнительным включением в модель фактора х2. Соответственно для двухфакторной линейной регрессии число степеней свободы для регрессии, равное двум, также раскладывается на число степеней свободы для каждого фактора, то есть 1 для фактора х1 и 1 для фактора х2. Сумма квадратов за счет регрессии Wрегр распадается здесь на две суммы. Сумма квадратов, обусловленная включением в модель фактора х1 (Wрегр х1), определяется в предположении, что построено лишь парное уравнение регрессии ух1=а + вх1. Эта величина может быть определена следующим образом Wрегрх1 = rух12× Wобщ. Сумму квадратов, обусловленную дополнительным включением фактора х2, после того, как в модель включен фактор х1, определим как разность суммы квадратов за счет регрессии по двум факторам и за счет регрессии только фактора х1. Далее по известным нам формулам определяется дисперсии на одну степень свободы и критерии Фишера. Если величина частного критерия Фишера оказывается меньше табличного, то включение в модель такого фактора нецелесообразно.
|