Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частные F- тесты





Достоверность уравнения множественной регрессии в целом, как и парной, оценивается с помощью критерия Фишера

(5.2.16)

где

Wобщ.=п×σу 2; Wрегр.= Wобщ×R2;; Wост..= Wобщ×(1-R2)= Wобщ.- Wрегр

Оценивается также значимость не только уравнения в целом, но и фактора, дополнительно включенного в регрессионную модель. Необходимость такой оценки связана с тем, что не каждый фактор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативного признака. Мерой для оценки включения фактора в модель служит частный критерий Фишера. Частный F - критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора с остаточной дисперсией на одну степень свободы по регрессионной модели, включающей полный набор факторов

(5.2.17)

Так как прирост факторной суммы квадратов отклонений обусловлен дополнительным включением в модель одного исследуемого фактора, то число степеней свободы для него равно dfx1 = 1. Для остаточного объема вариации число степеней свободы dfост = n-m-1. Соотношение числа степеней свободы приведено в формуле частного F-критерия в виде дроби .

Дисперсионный анализ такой модели отличается от анализа, проводимого нами ранее. Источник вариации «регрессия» раскладывается здесь на две составляющие:

1) обусловленная влиянием фактора х1;

2) обусловленная дополнительным включением в модель фактора х2. Соответственно для двухфакторной линейной регрессии число степеней свободы для регрессии, равное двум, также раскладывается на число степеней свободы для каждого фактора, то есть 1 для фактора х1 и 1 для фактора х2.

Сумма квадратов за счет регрессии Wрегр распадается здесь на две суммы. Сумма квадратов, обусловленная включением в модель фактора х1 (Wрегр х1), определяется в предположении, что построено лишь парное уравнение регрессии ух1=а + вх1. Эта величина может быть определена следующим образом Wрегрх1 = rух12× Wобщ. Сумму квадратов, обусловленную дополнительным включением фактора х2, после того, как в модель включен фактор х1, определим как разность суммы квадратов за счет регрессии по двум факторам и за счет регрессии только фактора х1. Далее по известным нам формулам определяется дисперсии на одну степень свободы и критерии Фишера. Если величина частного критерия Фишера оказывается меньше табличного, то включение в модель такого фактора нецелесообразно.







Дата добавления: 2015-08-17; просмотров: 842. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия