Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Трехкратные повороты


- Vocabulary game in net: https://www.youtube.com/watch?v=9D8oVMfBv54 – 2 hours

- Reading the text “On the Move” – 4 hours

 

- Make a vocabulary with new definitions about the topic “Transport” – 2 hours, no less than 150 words – 2 hours

 

- Academic writing: Comparing data – 8 hours

 

 

Трехкратные повороты

 

Матрицу поворота, определяющую произвольную ориентацию одной системы координат относительно другой, можно представить в виде произведения трех матриц элементарных поворотов

, (1)

где - матрица -го элементарного поворота вокруг оси на угол . Значение соответствует повороту вокруг оси , – вокруг оси и – вокруг оси .

Матрицы элементарных поворотов имеют следующий вид

, , ,

где введены сокращенные обозначения , для тригонометрических функций углов поворота .

Для этих матриц можно записать следующее общее выражение

, (2)

где - единичный вектор оси с номером ; .

В выражении (1) должны выполняться условия и , поскольку соседние повороты не должны производиться вокруг одной и той же оси. Поэтому возможны только следующие 12 комбинаций поворотов

: ;

: .

Комбинация {1,2,3} соответствует углам Брайнта, их также называют углами Кардана. Комбинации {3,1,3}, {3,2,3}, {3,2,1} соответствуют 1, 2, 3 системам поворотов в углах Эйлера. Комбинация {2,1,3} соответствует корабельным углам Крылова. Комбинация {2,3,1} соответствует самолетным углам {угол рыскания, угол тангажа, угол крена}.

На основании взаимной ортогональности единичных векторов можно получить следующие выражения

, , ,

, (3)

, - -й элемент матрицы ,

, , .

Обозначим индексом 1 исходную систему координат, а систему координат, полученную в результате трехкратного поворота от нее индексом 2. Используя (2),(3) можно получить выражения для элементов матрицы поворота в выражении (1). В полученных выражениях и далее будут использоваться следующие обозначения

,

,

.

В случае матрица поворота имеет следующий вид

. (4)

В случае матрица поворота имеет следующий вид

. (5)

Предположим, что значения элементов матрицы поворота (4),(5) известны

.

Тогда можно получить решения для тригонометрических функций углов поворота.

В случае из матрицы (4) получаем следующее решение

, ,

, , (6)

, .

Для решения (6) имеем особый случай при . При этом оси 1-го и 3-го поворотов совпадают. Из (6) получаем следующее решение для углов поворота для случая

,

, (7)

,

где .

В случае из матрицы (5) получаем следующее решение для тригонометрических функций углов поворота

, ,

, , (8)

, ,

Для решения (8) имеем особый случай при . При этом оси 1-го и 3-го поворотов совпадают. Из (8) получаем следующее решение для углов поворота для случая

,

, (9)

.

Используя выражения для матриц поворота (4), (5) можно получить выражения для матриц , с использованием которых угловые скорости систем координат определяются выражением

, (10)

где .

Продифференцировав (10) можно получить выражение для векторов в выражении для угловых ускорений систем координат

Отметим, что

;

,

где в качестве выступают .

В случае матрица и вектор имеют следующие значения

, (11)

. (12)

В случае матрица и вектор имеют следующие значения

, (13)

. (14)

Рассмотрим условия вырожденности матрицы , когда ее определитель становится равным нулю.

В случае определитель , и получаем следующие условия вырождения матрицы

.

В случае определитель , и получаем следующие условия вырождения матрицы

.

Если матрица не вырожденная, то можно вычислить значение обратной матрицы . Используя обратную матрицу можно определить скорости и ускорения элементарных поворотов

,

.

В случае матрица определяется следующим выражением

.

В случае матрица определяется следующим выражением

.

 

 




<== предыдущая лекция | следующая лекция ==>
 | Facts and Concepts for Your Synopsis

Дата добавления: 2015-08-27; просмотров: 534. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия