Виды и типы разъемов
При всех достоинствах оптических волокон, для монтажа сетей их необходимо соединять. Именно сложность этого процесса для световодов из кварцевого стекла является основным сдерживающим фактором оптоволоконной технологии. Несмотря на весь прогресс технологии последних лет, непрофессионалам доступно только соединение кабелей, не имеющих особых требований по качеству. Серьезные работы по монтажу магистралей регионального значения требуют наличия дорогостоящего оборудования и высоко квалифицированного персонала. Но для создания междомовой разводки "последней мили" такие сложности уже не нужны. Работы доступны специалистам без серьезной подготовки (или вообще без нее), комплект технологического оборудования стоит менее $300. В сочетании с этим, огромные (не побоюсь этого слова) преимущества оптоволокна над медными кабелями при воздушных прокладках делают его очень привлекательным материалом для домашних сетей. Рассмотрим подробнее виды и способы соединения оптических волокон. Для начала, нужно принципиально разделить сростки (неразъемные соединения), и оптические разъемы. В сравнительно небольших сетях (до нескольких километров диаметром) сростки не желательны, и их следует избегать. Основной на сегодня способ их создания - сварка электрическим разрядом. Рис. 8.5. Принцип сварки оптического волокна. Такое соединение надежно, долговечно, и вносит ничтожно малое затухание в оптический тракт. Но для сварки нужно весьма дорогостоящее оборудование (в районе нескольких десятков тысяч долларов), и сравнительно высокая квалификация оператора. Обусловлено это необходимостью высокоточного совмещения концов волокон перед сваркой, и соблюдения стабильных параметров электрической дуги. Кроме этого, нужно обеспечить ровные (и перпендикулярные оси волокна) торцы (сколы) свариваемых волокон, что само по себе является достаточно сложной задачей. Соответственно, выполнение таких работ "от случая к случаю" своими силами не рационально, и проще пользоваться услугами специалистов. Так же подобный способ часто используется для оконечивания кабелей путем сварки волокон кабеля с небольшими отрезками гибких кабелей с уже установленными разъемами (pig tаil, буквально - поросячий хвост). Но с распространением клеевых соединений, сварка постепенно сдает позиции при терминировании линий. Второй способ создания неразъемных соединений - механический, или с использованием специальных соединителей (сплайсов). Первоначальное назначение этой технологии - быстрое временное соединение, используемое для восстановления работоспособности линии в случае разрыва. Со временем, на "ремонтные" сплайсы некоторые фирмы начали давать гарантию до 10 лет, и до нескольких десятков циклов соединения-разъединения. Поэтому целесообразно выделить их в отдельный способ создания неразъемных соединений. Принцип действия сплайса достаточно прост. Волокна закрепляются в механическом кондукторе, и специальными винтами сближаются друг c другом. Для хорошего оптического контакта в месте стыка используется специальный гель с похожими на кварцевое стекло оптическими свойствами. Несмотря на внешнюю простоту и привлекательность, способ не получил широкого распространения. Причин этому две. Во-первых, он все-таки заметно уступает по надежности и долговечности сварке, и для магистральных телекоммуникационных каналов не пригоден. Во-вторых, он обходится дороже, чем монтаж клеевых разъемов, и требует более дорогого технологического оборудования. Поэтому, он достаточно редко применяется и при монтаже локальных сетей. Единственное, в чем эта технология не знает себе равных - это скорость выполнения работ, и не требовательность к внешним условиям. Но этого на сегодня явно не достаточно для полного завоевания рынка. Рассмотрим разъемные соединения. Если предел дальности действия высокоскоростных электропроводных линий на основе витой пары зависит от разъемов, то в оптоволоконных системах вносимые ими дополнительные потери достаточно малы. Затухание в них оставляет около 0,2-0,3 дБ (или несколько процентов). Поэтому вполне возможно создавать сети сложной топологии без использования активного оборудования, коммутируя волокна на обычных разъемах. Особенно заметны преимущества такого подхода на небольших по протяженности, но разветвленных сетях "последней мили". Очень удобно отводить по одной паре волокон на каждый дом от общей магистрали, соединяя остальные волокна в коммутационной коробке "на проход". Что основное в разъемном соединении? Конечно, сам разъем. Основные его функции заключаются в фиксация волокна в центрирующей системе (соединителе), и защите волокна от механических и климатических воздействий. Основные требования к разъемам следующие:
На сегодня известно несколько десятков типов разъемов, и нет того единого, на который было бы стратегически сориентировано развитие отрасли в целом. Но основная идея все вариантов конструкций проста и достаточно очевидна. Необходимо точно совместить оси волокон, и плотно прижать их торцы друг к другу (создать контакт). Рис. 8.6. Принцип действия оптоволоконного разъема контактного типа Основная масса разъемов выпускается по симметричной схеме, когда для соединения разъемов используется специальный элемент - coupler (соединитель). Получается, что сначала волокно закрепляется и центрируется в наконечнике разъема, а затем уже сами наконечники центрируются в соединителе. Таким образом, можно видеть, что на сигнал влияют следующие факторы:
Несмотря на отсутствие официально признанного всеми производителями типа разъема, фактически распространены ST и SC, весьма похожие по своим параметрам (затухание 0,2-0,3 дБ). Рис. 8.7. Разъемы оптических волокон. ST. От английского straight tip connector (прямой разъем) или, неофициально Stick-and-Twist (вставь и поверни). Был разработан в 1985 году AT&T, ныне Lucent Technologies. Конструкция основана на керамическом наконечнике (феруле) диаметром 2,5 мм с выпуклой торцевой поверхностью. Фиксация вилки на гнезде выполняется подпружиненным байонетным элементом (подобно разъемам BNC, использующимся для коаксиального кабеля). Разъемы ST - самый дешевый и распространенный в России тип. Он немного лучше, чем SC, приспособлен к тяжелым условиям эксплуатации благодаря простой и прочной металлической конструкции (допускает больше возможностей для применения грубой физической силы). Как основные недостатки, можно назвать сложность маркировки, трудоемкость подключения, и невозможность создания дуплексной вилки. SC. От английского subscriber connector (абонентский разъем), а иногда используется неофициальная расшифровка Stick-and-Click (вставь и защелкни). Был разработан японской компанией NTT, с использованием такого же, как в ST, керамического наконечника диаметром 2,5 мм. Но основная идея заключается в легком пластмассовом корпусе, хорошо защищающим наконечник, и обеспечивающим плавное подключение и отключение одним линейным движением. Такая конструкция позволяет достичь большой плотности монтажа, и легко адаптируется к удобным сдвоенным разъемам. Поэтому разъемы SC рекомендованы для создания новых систем, и постепенно вытесняют ST. Дополнительно нужно отметить еще два типа, один из которых используется в смежной отрасли, а другой постепенно набирает популярность. FC. Очень похож на ST, но с резьбовой фиксацией. Активно используется телефонистами всех стран, но в локальных сетях практически не встречается. LC. Новый "миниатюрный" разъем, конструктивно идентичный SC. Пока достаточно дорог, и для "дешевых" сетей его применение бессмысленно. Как главный аргумент "за" создатели приводят большую плотность монтажа. Это достаточно серьезный довод, и в отдаленном (по телекоммуникационным меркам) будущем вполне возможно, что он станет основным типом. Конструкционные элементы (шкафы и муфты) Как правило, оптоволоконные кабеля разделываются с большим запасом по длине свободных волокон. Первоначально это было обусловлено сложностью соединения. Процесс скола, сварки мог повторяться далеко не один раз, и каждая попытка требовала несколько десятков сантиметров волокна. С тех пор технология усовершенствовалась явно недостаточно, что бы можно было обойтись без этого. Кроме этого, кабель необходимо жестко зафиксировать, волокна уложить по достаточно большому радиусу, надежно закрепить необходимые элементы (сплайсы, гильзы, соединители). К созданному соединению нужно обеспечить доступ, предусмотреть возможность переключений или модификации. Попробуем дать определения основным конструкционным элементам, при помощи которых реализуются эти задачи. Шкафы оптические (распределительные) предназначены для организации разъемного соединения нескольких оптических кабелей, и выполнения переключений в процессе эксплуатации сети. Как правило, они применяются при переходе с линейных (внешних) оптоволоконных кабелей на линии, прокладываемые внутри зданий, или для подключения активного оборудования. Рис. 8.8. Конструкция настенного оптического шкафа Шкаф представляют собой устанавливаемый на стене или на любой стойке универсальный металлический корпус, в котором имеется разъёмно-коммутационная панель, на которую монтируются оптические соединители. С одной стороны к ним подключаются разъемы одного (или нескольких) разделанных в шкафу кабелей, с другой - присоединяемых. Роль последних очень часто выполняют гибкие коммутационные шнуры, с помощью которых выполняются коммутации или подключается активное оборудование. Обычно коммутационная панель, дополнительно к прямому назначению, разделяет внутренне пространство шкафа на секцию для размещения сращиваемых световодов, и секцию коммутационных соединений. В недорогих конструкциях роль кроссовой панели может выполнять внешняя стенка корпуса. Свободные волокна (технологический запас) закрепляется на специальном организаторе световодов (сплайс-пластине), которая обеспечивает их фиксацию с соблюдением минимально допустимого радиуса изгиба. Там же при необходимости предусматривается крепление сросток (защитных гильз, или сплайсов). Иногда как отдельный элемент выделяется кабельный фиксатор, при помощи которого кабель прикрепляется к корпусу шкафа. Нужно отметить, что для установки в 19-ти дюймовую стойку существуют элементы, практически полностью совпадающие с оптическими шкафами как по назначению, так и по конструкции. Но называются они коммутационные полки. На особенностях их конструкции останавливаться подробно нет смысла, так как они предназначены для использования в структурах с большой плотностью оптических портов, к которым сети "последней мили" не относятся. Для создания неразьемных соединений используются оптические муфты. Они предназначены для восстановления оболочек кабеля, и обеспечения прямого сращивания и разветвления кабелей. Применяются они в самых разных условиях, и поэтому их конструкция отличается большим разнообразием. Рис. 8.9. Конструкция муфты. Конструкция муфт достаточно проста. Это герметически закрытый корпус, в котором размешен организатор световодов (сплайс-кассета), и предусмотрено крепление кабелей. В общем случае, муфта не предназначена для коммутации или обслуживания. Но многие конструкции позволяют выполнять частичную модификацию соединения без полной замены конструкции. Согласно технических требований, муфты должны обеспечивать размещение в них запаса длин оптических волокон с диаметром укладки не менее 750 мм, быть стойкими к воздействию растягивающих усилий 50...80% от нормируемого растягивающего усилия кабеля, для монтажа которого они предназначены. Можно попытаться классифицировать оптические муфты следующим образом:
В общем, можно сказать, что грань между оптическими шкафами и муфтами весьма условна. Есть достаточно примеров конструкций, которые могут быть с равным правом отнесены к любому из этих двух типов. Так, достаточно распространены муфты под размещение разъемных соединений. С другой стороны, часто используются шкафы для размещения сросток - например при переходе с одного типа кабеля на другой. Но для потребителя это разнообразие очень удобно. Выбор конструкций большой, и всегда можно найти именно то, что наилучшим образом отвечает техническим потребностям.
|