Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение краевой задачи для линейного


На сегодняшний день наиболее востребованными процедурами являются: лазерное омоложение кожи (принцип один – названий много: лазерная шлифовка, лазерная абляция, фракционный фототермолиз, фракционный термолиз, аблятивный фототермолиз, лазерная ревитализация, лазерная наноперфорация, дермальный оптический термолиз – иными словами структурное омоложение и устранение недостатков кожи лица и тела посредством лазерного излучения с различной геометрией проникновения) и эпиляция.

Пациенты все больше доверяют лазерным технологиям и с каждым годом увеличивается число людей, которые предпочитают проходить лечение на лазерных аппаратах. Процедуры не инвазивны и подхватить какую-либо инфекцию просто невозможно. Они комфортны и безболезненны. В руках профессионала – безопасны. А эффективность давно не ограничивается только лишь косметологией – успешное лечение кожных заболеваний, реабилитационно-восстановительное лечение после пластических операций и клинические исследования продолжаются.

Появляется много «доступных» и «бюджетных» новинок, обещающих чудо. Причем большинство из них «самые современные, безопасные и революционно эффективные». Уже есть модные «нано-«, загадочные «квантовые», скоро, видимо, придет очередь «на основе холодного ядерного синтеза» и «магнито-нуклеарных». Но сколько ВАЗ не модернизируй, «Мерседес» не получишь. Только производитель, вкладывающий очень много в научные исследования, отрабатывающий технологии в лабораториях, сотрудничающий с практикующими врачами разных стран и континентов будет делать эффективное и безопасное медицинское оборудование. А это не дешево. Либо ходите пешком – выбор за Вами. Это во-первых. Далее прослеживаются еще две тенденции – более селективное и прицельное воздействие либо одновременное комбинированное и интенсивное, несколько в одном. На мой взгляд, интенсивная комбинация и попытка достигнуть быстрого и многогранного эффекта далеко небезопасна, о чем уже говорят яркие и известные примеры. Кожа не броня, а организм не танк, и эстетическая медицина не поле боя. Любое внешнее воздействие организм должен принять, адаптироваться к нему и перейти на иное качественное состояние, комфортное и безопасное для его хозяина. Поэтому будущее за мягкими селективными технологиями, допускающие гармоничные комбинации не более двух отдельных методик. Остерегайтесь «чудес» и «революций».

 

Решение краевой задачи для линейного

дифференциального уравнения второго порядка
методом прогонки

Пусть на отрезке требуется найти решение дифференциального уравнения:

, (1)

удовлетворяющее следующим краевым условиям:

 

;
(2)
;

Численное решение задачи состоит в нахождении приближенных значений искомого решения в точках . Для этого разобьем отрезок на равных частей с шагом . Полагая и вводя обозначения , , для внутренних точек отрезка , вместо дифференциального уравнения (1)–(2) получаем систему конечноразностных уравнений:

После соответствующих преобразований будем иметь

, , (3)

где

.

Полученная система имеет линейных уравнений с неизвестными. Решим эту систему методом прогонки.

Решая уравнение (3) относительно , будем иметь

.

Предположим, что из этого уравнения исключена неизвестная . Тогда это уравнение примет вид

, (4)

где – некоторые коэффициенты.

Отсюда . Подставляя это выражение в (3), получим и, следовательно,

. (5)

Сравнивая формулы (4) и (5), получим для определения рекуррентные формулы:

.

Определим :

.

Из формулы (4) при имеем

. (6)

Поэтому

, . (7)

На основании формул (6) и (7) последовательно определяются коэффициенты до включительно (прямой ход). Обратный ход начинается с определения . Решая систему

,

получим

и по формуле (4) последовательно находим .

Для простейших краевых условий формулы для упрощаются. Полагая получим .

Отсюда .

 




<== предыдущая лекция | следующая лекция ==>
ВОЗДЕЙСТВИЕ ЛАЗЕРНОГО СВЕТА НА БИОТКАНИ | 

Дата добавления: 2015-08-27; просмотров: 338. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия