Лазеры.
Безопасность жизнедеятельности. Инженерные расчеты: учеб. пособие / В.В. Персиянов, Л.Л. Никифоров, М.И. Ермолаев, И. Д. Мурашов – М.: МГУПБ, 2011. – 111 с.
ISBN
Рассматриваются методики инженерных расчетов вредных и опасных факторов в системе “человек-среда обитания” и в чрезвычайных ситуациях мирного и военного времени. Предназначено для выполнения расчетно-графических работ по дисциплинам “Безопасность жизнедеятельности», «Безопасность труда», «Производственная санитария и гигиена труда», «Защита в чрезвычайных ситуациях».
Утверждены УМС МГУПБ в качестве учебного пособия.
ISBN МГУПБ, 2011 Лазеры. Лазеры или оптические квантовые генераторы – это современные когерентные источники излучения, обладающие целым рядом уникальных свойств. LASER - Light Amplification by Stimulated Emission of Radiation - усиление света с помощью вынужденного излучения. Создание лазеров явилось одним из самых замечательных достижений физики второй половины XX века, которое привело к революционным изменениям во многих областях науки и техники. Лазер имеет 3 основных компонента: 1) Активную среду, в которой создается состояние с инверсией населенностей 2) систему накачки 3) Оптический резонатор – устройство, выделяющее избирательное направление пучка фотонов и формирующее выходящий световой пучок. По типу активной среды лазеры делятся на: Газовые (Не-Ne, Ar.CO2,N); твердотельные(алюмоиттриевый, гранатовый,рубиновый, фтористый кальций), полупроводниковые, жидкостные(раствор красителя в спирте), Лазеры могут работать в импульсном и непрерывном режимах. По методам накачки они делятся на оптические, тепловые, химические, электроионизационные. В настоящее время лазеры перекрывают диапазон от ультрафиолета до субмиллиметровых волн, достигнуты первые успехи в создании рентгеновских лазеров, созданы перестраиваемые по частоте лазеры. Мощность лазерного излучения в непрерывном режиме может быть порядка 105-106 Вт, в импульсном - до 1012-1013 Вт, при этом удается достичь интенсивностей порядка 1012-1016 Вт/cм2. Существенно, что эти мощности могут быть сконцентрированы в чрезвычайно узких спектральных и временных интервалах. Длительность импульса излучения в лазерах, работающих в режиме синхронизации мод, может составлять 10-12-10-13 с и специальными методами доводиться до 10-15 с (за это время свет проходит всего 3*10-5 см), то есть лазеры обладают удивительно высокой степенью концентрации энергии во времени. Одним из важнейших свойств лазерного излучения является чрезвычайно высокая степень его монохроматичности, недостижимая в излучении нелазерных источников. Чтобы понять принцип работы лазера, нужно более внимательно изучить процессы поглощения и излучения атомами квантов света. Атом может находиться в различных энергетических состояниях с энергиями E1, E2 и т. д. В теории Бора эти состояния называются стабильными. На самом деле стабильным состоянием, в котором атом может находиться бесконечно долго в отсутствие внешних возмущений, является только состояние с наименьшей энергией. Это состояние называют основным. Все другие состояния нестабильны. Возбужденный атом может пребывать в этих состояниях лишь очень короткое время, порядка 10–8 с, после этого он самопроизвольно переходит в одно из низших состояний, испуская квант света, частоту которого можно определить из второго постулата Бора. Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называют спонтанным. На некоторых энергетических уровнях атом может пребывать значительно большее время, порядка 10–3 с. Такие уровни называются метастабильными. Метастабильный уровень- возбужденный уровень энергии атома, молекулы или другой квантовой системы, с которого переходы с излучением фотона запрещены правилами квантовой механики. Благодаря этому время жизни на метастабильном уровне велико по сравнению с обычным временем жизни возбужденных энергетических уровней. Переход атома в более высокое энергетическое состояние может происходить при резонансном поглощении фотона, энергия которого равна разности энергий атома в конечном и начальном состояниях. Переходы между энергетическими уровнями атома не обязательно связаны с поглощением или испусканием фотонов. Атом может приобрести или отдать часть своей энергии и перейти в другое квантовое состояние в результате взаимодействия с другими атомами или столкновений с электронами. Такие переходы называются безизлучательными. В 1916 году А. Эйнштейн предсказал, что переход электрона в атоме с верхнего энергетического уровня на нижний может происходить под влиянием внешнего электромагнитного поля, частота которого равна собственной частоте перехода. Возникающее при этом излучение называют вынужденным или индуцированным. Вынужденное излучение обладает удивительным свойством. Оно резко отличается от спонтанного излучения. В результате взаимодействия возбужденного атома с фотоном атом испускает еще один фотон той же самой частоты, распространяющийся в том же направлении. На языке волновой теории это означает, что атом излучает электромагнитную волну, у которой частота, фаза, поляризация и направление распространения точно такие же, как и у первоначальной волны. В результате вынужденного испускания фотонов амплитуда волны, распространяющейся в среде, возрастает. С точки зрения квантовой теории, в результате взаимодействия возбужденного атома с фотоном, частота которого равна частоте перехода, появляются два совершенно одинаковых фотона-близнеца.
|