Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕПЛОВАЯ ИЗОЛЯЦИЯ





 

11.1 Для тепловых сетей следует, как правило, принимать теплоизоляционные материалы и конструкции, проверенные практикой эксплуатации. Новые материалы и конструкции допускаются к применению при положительных результатах независимых испытаний, проведенных специализированными лабораториями.

11.2 Материалы тепловой изоляции и покровного слоя теплопроводов должны отвечать требованиям СНиП 41-03, норм пожарной безопасности и выбираться в зависимости от конкретных условий и способов прокладки.

При совместной подземной прокладке в тоннелях (проходных каналах) теплопроводов с электрическими или слаботочными кабелями, трубопроводами, транспортирующими горючие вещества, не допускается применять тепловую изоляционную конструкцию из горючих материалов. При отдельной прокладке теплопроводов в тоннелях (проходных каналах) применение негорючих материалов (НГ) обязательно только для покровного слоя тепловой изоляции теплопроводов.

При надземной прокладке теплопроводов рекомендуется применять для покровного слоя теплоизоляции негорючие материалы и групп горючести Г1 и Г2.

При подземной бесканальной прокладке и в непроходных каналах допускается применять горючие материалы теплоизоляционного и покровного слоев.

11.3 Тоннель (проходной канал) следует разделять через каждые 200 м на отсеки противопожарными перегородками 1-го типа с противопожарными дверями 2-го типа.

11.4 При прокладке теплопроводов в теплоизоляции из горючих материалов следует предусматривать вставки из негорючих материалов длиной не менее 3 м:

в каждой камере тепловой сети и на вводе в здания;

при надземной прокладке — через каждые 100 м, при этом для вертикальных участков через каждые 10 м;

в местах выхода теплопроводов из грунта.

При применении конструкций теплопроводов в теплоизоляции из горючих материалов в негорючей оболочке допускается вставки не делать.

11.5 Детали крепления теплопроводов должны выполняться из коррозионно-стойких материалов или покрываться антикоррозионными покрытиями.

11.6 Выбор материала тепловой изоляции и конструкции теплопровода следует производить по экономическому оптимуму суммарных эксплуатационных затрат и капиталовложений в тепловые сети, сопутствующие конструкции и сооружения. При выборе теплоизоляционных материалов, применение которых вызывает необходимость изменения параметров теплоносителя (расчетной температуры, режимов регулирования и т.п.), следует производить сопоставление вариантов систем централизованного теплоснабжения в целом.

Выбор толщины теплоизоляции следует производить по СНиП 41-03 на заданные параметры с учетом климатологических данных пункта строительства, стоимости теплоизоляционной конструкции и теплоты.

11.7 При определении тепловых потерь трубопроводами расчетная температура теплоносителя принимается для подающих теплопроводов водяных тепловых сетей:

при постоянной температуре сетевой воды и количественном регулировании — максимальная температура теплоносителя;

при переменной температуре сетевой воды и качественном регулировании — среднегодовая температура теплоносителя 110 °С при температурном графике регулирования 180—70 °С, 90 °С при 150—70 °С, 65 °С при 130—70 °С и 55 °С при 95—70 °С. Среднегодовая температура для обратных теплопроводов водяных тепловых сетей принимается 50 °С.

11.8 При размещении теплопроводов в служебных помещениях, технических подпольях и подвалах жилых зданий температура внутреннего воздуха принимается равной 20 °С, а температура на поверхности конструкции теплопроводов не выше 45 °С.

11.9 При выборе конструкций теплопроводов надземной и канальной прокладки следует соблюдать требования к теплопроводам в сборке:

при применении конструкций с негерметичными покрытиями покровный слой теплоизоляции должен быть водонепроницаемым и не препятствовать высыханию увлажненной теплоизоляции.

при применении конструкций с герметичными покрытиями обязательно устройство системы оперативного дистанционного контроля (ОДК) увлажнения теплоизоляции;

показатели температуростойкости, противостояния инсоляции должны находиться в заданных пределах в течение всего расчетного срока службы для каждого элемента или конструкции;

скорость наружной коррозии стальных труб не должна превышать 0,03 мм/год.

11.10 При выборе конструкций для подземных бесканальных прокладок тепловых сетей следует рассматривать две группы конструкций теплопроводов:

группа «а» — теплопроводы в герметичной паронепроницаемой гидрозащитной оболочке. Представительная конструкция — теплопроводы заводского изготовления в пенополиуретановой теплоизоляции с полиэтиленовой оболочкой по ГОСТ 30732;

группа «б» — теплопроводы с паропроницаемым гидрозащитным покрытием или в монолитной теплоизоляции, наружный уплотненный слой которой должен быть водонепроницаемым и одновременно паропроницаемым, а внутренний слой, прилегающий к трубе, — защищать стальную трубу от коррозии. Представительные конструкции — теплопроводы заводского изготовления в пенополимерминеральной или армопенобетонной теплоизоляции.

11.11 Обязательные требования к теплопроводам группы «а»:

равномерная плотность заполнения конструкции теплоизоляционным материалом;

герметичность оболочки и наличие системы ОДК, организация замены влажного участка сухим;

показатели температуростойкости должны находиться в заданных пределах в течение расчетного срока службы;

скорость наружной коррозии труб не должна превышать 0,03 мм/год;

стойкость к истиранию защитного покрытия — на более 2 мм/25 лет.

Обязательные требования к физико-техническим характеристикам конструкций теплопроводов группы «б»:

показатели температуростойкости должны находиться в заданных пределах в течение расчетного срока службы;

скорость наружной коррозии стальных труб не должна превышать 0,03 мм/год.

11.12 При расчете толщины изоляции и определении годовых потерь теплоты теплопроводами, проложенными бесканально на глубине заложения оси теплопровода более 0,7 м, за расчетную температуру окружающей среды принимается средняя за год температура грунта на этой глубине.

При глубине заложения теплопровода от верха теплоизоляционной конструкции менее 0,7 м за расчетную температуру окружающей среды принимается та же температура наружного воздуха, что и при надземной прокладке.

Для определения температуры грунта в температурном поле подземного теплопровода температура теплоносителя должна приниматься:

для водяных тепловых сетей — по температурному графику регулирования при средней месячной температуре наружного воздуха расчетного месяца;

для сетей горячего водоснабжения — по максимальной температуре горячей воды.

11.13 При выборе конструкций надземных теплопроводов следует учитывать следующие требования к физико-техническим характеристикам конструкций теплопроводов:

показатели температуростойкости должны находиться в заданных пределах в течение расчетного срока службы конструкции;

скорость наружной коррозии стальных труб не должна превышать 0,03 мм/год.

11.14 При определении толщины теплоизоляции теплопроводов, проложенных в проходных каналах и тоннелях, следует принимать температуру воздуха в них не более 40 °С.

11.15 При определении годовых потерь теплоты теплопроводами, проложенными в каналах и тоннелях, параметры теплоносителя следует принимать по 11.7.

11.16 При прокладке тепловых сетей в непроходных каналах и бесканально коэффициент теплопроводности теплоизоляции должен приниматься с учетом возможного увлажнения конструкции теплопроводов.

 







Дата добавления: 2015-08-28; просмотров: 442. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия