Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задания на контрольную работу





по разделу «Математика»

 

Вариант 1

1. Даны два множества: А = {6 k + 1½ k = 0, 1, 2,…} и B = {3 m + 4½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {1, 3} и B = {2, 4, 5, 6}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 96 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. Среди 24 студентов одним английским языком владеют 15 человек, немецким и английским - 2 человека. Не владеет (например, изучал французский или испанский) ни английским, ни немецким - 1 человек. Сколько студентов владеет только немецким языком?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) ; б) ; в) ; г) .

6. Даны два множества: А = {6 k + 1½ k = 0, 1, 2,…} и B = {3 m + 4½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® ¥.

9. Правильно ли рассуждение, имеющее форму: «Все х являются у и ни одно х не является z; значит, все у не являются z»?

10. Построить таблицу истинности для высказывания

.

11. Доказать методом математической индукции, что при любом натуральном п справедливо следующее равенство:

.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 21,48(10) в двоичную, восьмеричную и шестнадцатеричную систему.

 

Вариант 2

1. Даны два множества: А = {2 k + 1½ k = 0, 1, 2,…} и B = {3 m ½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {2, 3} и B = {1, 2, 3, 4}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 105 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. В группе 30 студентов. Все, кроме двух, по итогам экзаменационной сессии имеют оценки «удовлетворительно» («3»), «хорошо» («4») и «отлично» («5»). Число студентов, имеющих оценки «5» - двенадцать, «4» - четырнадцать, «3» - шестнадцать. Трое учатся лишь на «5» и «3», трое – лишь на «5» и «4» и четверо – лишь на «4» и на «3». Сколько студентов сдали экзаменационную сессию только на «5»?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) ; б) ; в) ; г) .

6. Даны два множества: А = {2 k + 1½ k = 0, 1, 2,…} и B = {3 m ½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® ¥.

9. Правильно ли рассуждение, имеющее форму: «Все х не являются у и некоторые х являются z; значит, все у не являются z»?

10. Построить таблицу истинности для высказывания

.

11. Доказать методом математической индукции, что при любом натуральном п справедливо следующее равенство:

.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 17,24(10) в двоичную, восьмеричную и шестнадцатеричную систему.

 

Вариант 3

1. Даны два множества: А = {3 k + 3½ k = 0, 1, 2,…} и B = { m + 2½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {1, 4} и B = {2, 3, 5, 6}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 126 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. Из 220 студентов 163 играют в баскетбол, 175 - в футбол, 24 не играют в эти игры. Сколько человек одновременно играет в баскетбол и футбол?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) ; б) ; в) ; г) .

6. Даны два множества: А = {3 k + 3½ k = 0, 1, 2,…} и B = { m + 2½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® ¥.

9. Правильно ли рассуждение, имеющее форму: «Ни одно х не является у и некоторые у являются z; значит, некоторые z не являются x»?

10. Построить таблицу истинности для высказывания

.

11. Доказать методом математической индукции, что при любом натуральном п справедливо следующее равенство:

.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 23,81(10) в двоичную, восьмеричную и шестнадцатеричную систему.

 

Вариант 4

1. Даны два множества: А = {6 k + 5½ k = 0, 1, 2,…} и B = {3 m + 2½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {3, 5} и B = {2, 4, 6,7}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 210 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. В группе 30 студентов. Все, кроме трёх, по итогам экзаменационной сессии имеют оценки «удовлетворительно» («3»), «хорошо» («4») и «отлично» («5»). Число студентов, имеющих оценки «5» - одиннадцать, «4» - четырнадцать, «3» - семнадцать. Трое учатся лишь на «5» и «3», трое – лишь на «5» и «4» и четверо – лишь на «4» и на «3». Сколько студентов сдали экзаменационную сессию только на «3»?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) ; б) ; в) ; г) .

6. Даны два множества: А = {6 k + 5½ k = 0, 1, 2,…} и B = {3 m + 2½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® ¥.

9. Правильно ли рассуждение, имеющее форму: «Некоторые х являются у и некоторые у являются z; значит, некоторые z не являются x»?

10. Построить таблицу истинности для высказывания

.

11. Доказать методом математической индукции, что при любом натуральном п справедливо следующее равенство:

.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 24,26(10) в двоичную, восьмеричную и шестнадцатеричную систему.

 

Вариант 5

1. Даны два множества: А = {2 k ½ k = 0, 1, 2,…} и B = { m + 2½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {1, 5} и B = {2, 3, 4, 6}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 280 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. В группе 30 студентов. Все, кроме двух, по итогам экзаменационной сессии имеют оценки «удовлетворительно» («3»), «хорошо» («4») и «отлично» («5»). Число студентов, имеющих оценки «5» - двенадцать, «4» - четырнадцать, «3» - шестнадцать. Трое учатся лишь на «5» и «3», трое – лишь на «5» и «4» и четверо – лишь на «4» и на «3». Сколько студентов имеют одновременно оценки «5», «4» и «3»?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) ; б) ; в) ; г) .

6. Даны два множества: А = {2 k ½ k = 0, 1, 2,…} и B = { m + 2½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® ¥.

9. Правильно ли рассуждение, имеющее форму: «Если некоторые у являются х, некоторые у являются z и некоторые z являются х, то некоторые х одновременно являются и у, и z»?

10. Построить таблицу истинности для высказывания

.

11. Доказать методом математической индукции, что при любом натуральном п справедливо следующее равенство:

.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 15,34(10) в двоичную, восьмеричную и шестнадцатеричную систему.

 

Вариант 6

1. Даны два множества: А = {4 k + 1½ k = 0, 1, 2,…} и B = {3 m + 5½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {1, 3, 4} и B = {2, 4, 5}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 315 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. В группе 30 студентов. Все, кроме трёх, по итогам экзаменационной сессии имеют оценки «удовлетворительно» («3»), «хорошо» («4») и «отлично» («5»). Число студентов, имеющих оценки «5» - двенадцать, «4» - тринадцать, «3» - шестнадцать. Трое учатся лишь на «5» и «3», трое – лишь на «5» и «4» и четверо – лишь на «4» и на «3». Сколько студентов сдали экзаменационную сессию только на «4»?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) ; б) ; в) ; г) .

6. Даны два множества: А = {4 k + 1½ k = 0, 1, 2,…} и B = {3 m + 5½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® ¥.

9. Правильно ли рассуждение, имеющее форму: «Если все у являются х, некоторые у являются z и некоторые z являются х, то некоторые х одновременно являются и у, и z»?

10. Построить таблицу истинности для высказывания

.

11. Доказать методом математической индукции, что при любом натуральном п справедливо следующее равенство:

.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 26,17(10) в двоичную, восьмеричную и шестнадцатеричную систему.

 

Вариант 7

1. Даны два множества: А = {2 k + 3½ k = 0, 1, 2,…} и B = {3 m ½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {2, 3, 5} и B = {2, 4, 6}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 390 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. Из 64 студентов на вопрос, занимаются ли они в свободное время спортом, утвердительно ответили 40 человек; на вопрос, любят ли они слушать музыку, 30 человек ответили утвердительно. Причём 21 студент занимаются спортом и любят слушать музыку. Сколько человек не увлекается ни спортом, ни музыкой?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) ; б) ; в) ; г) .

6. Даны два множества: А = {2 k + 3½ k = 0, 1, 2,…} и B = {3 m ½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® 0.

9. Правильно ли рассуждение, имеющее форму: «Все х являются у и некоторые х являются z; значит, все у являются z»?

10. Построить таблицу истинности для высказывания

.

11. Числовая последовательность а 0, а 1, а 2, …, ап, … определяется следующими условиями: а 0 = 1, ап +1 = 2× ап + 1. Доказать методом математической индукции, что ап = 2 n +1 – 1 при всех натуральных п.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 17,84(10) в двоичную, восьмеричную и шестнадцатеричную систему.

 

Вариант 8

1. Даны два множества: А = {3 k + 4½ k = 0, 1, 2,…} и B = { m + 4½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {3, 5} и B = {1, 2, 5, 6}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 420 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. Из 20 студентов двое могут играть только в шахматы, трое – только в шашки, шестеро – только в футбол. Никто не умеет играть во все три игры. Один играет в шахматы и шашки, трое - в футбол и шахматы. Сколько студентов умеет играть в футбол и шашки?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) ; б) ; в) ; г) .

6. Даны два множества: А = {3 k + 4½ k = 0, 1, 2,…} и B = { m + 4½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® 0.

9. Правильно ли рассуждение, имеющее форму: «Некоторые х являются у и все х являются z; значит, некоторые у являются z»?

10. Построить таблицу истинности для высказывания

.

11. Числовая последовательность а 1, а 2, …, ап, … определяется следующими условиями: а 1 = 2, ап +1 = 3× ап + 1. Доказать методом математической индукции, что ап = (5×3 n -1 – 1) при всех натуральных п.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 18,37(10) в двоичную, восьмеричную и шестнадцатеричную систему.

 

Вариант 9

1. Даны два множества: А = {5 k + 1½ k = 0, 1, 2,…} и B = { m + 1½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {1, 3, 7} и B = {4, 5, 6}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 504 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. Среди 35 студентов одним английским языком владеют 11 человек, английским и французским – 5 человек. Не владеют ни английским, ни французским 9 человек. Сколько студентов владеет французским языком?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) М = ; б) Р = ; в) ; г) .

6. Даны два множества: А = {5 k + 1½ k = 0, 1, 2,…} и B = { m + 1½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® 0.

9. Правильно ли рассуждение, имеющее форму: «Все х являются у и некоторые у являются z; значит, все z не являются х»?

10. Построить таблицу истинности для высказывания

.

11. Числовая последовательность а 0, а 1, а 2, …, ап, … определяется следующими условиями: а 0 = 2, а 1 = 3, ап +1 = a 1 × апа 0 × ап -1. Доказать методом математической индукции, что ап = 2 n + 1 при всех натуральных п.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 29,26(10) в двоичную, восьмеричную и шестнадцатеричную систему.

 

Вариант 10

1. Даны два множества: А = { k + 3½ k = 0, 1, 2,…} и B = { m + 2½ m = 0, 1, 2,…}. Найти: а) А È В; б) А Ç В; в) В \ А;г) А \ В; д) АВ.

2. Даны два множества: А = {7, 8} и B = {2, 4, 5, 6}. Найти декартово произведение: а) А ´ В; б) В ´ А.

3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 630 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

4. В группе 30 студентов. Все, кроме двух, по итогам экзаменационной сессии имеют оценки «удовлетворительно» («3»), «хорошо» («4») и «отлично» («5»). Число студентов, имеющих оценки «5» - двенадцать, «4» - четырнадцать, «3» - шестнадцать. Двое учатся одновременно на «5», «4» и «3», трое – лишь на «5» и «4» и четверо – лишь на «4» и на «3». Сколько студентов имеет только оценки «5» и «3»?

5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) М = ; б) Р = ; в) ; г) .

6. Даны два множества: А = { k + 3½ k = 0, 1, 2,…} и B = { m + 2½ m = 0, 1, 2,…}. Установите, является ли соответствие f: A ® B, заданное формулой , взаимно однозначным.

7. Найти область определения функции .

8. Найти предел функции при х ® 0.

9. Правильно ли рассуждение, имеющее форму: «Все х являются у и все у являются z; значит, некоторые z являются х»?

10. Построить таблицу истинности для высказывания

.

11. Доказать методом математической индукции, что неравенство выполняется при всех натуральных п > 3.

12. Найти обратную подстановку произведения (АВС)-1 при

А = В = С = .

13. Найдите производную функции .

14. Вычислите интеграл .

15. Переведите с точностью до 5 знаков после запятой число 15,18(10) в двоичную, восьмеричную и шестнадцатеричную систему.


Методические рекомендации по выполнению контрольной работы по разделу «Математика»

 

При подготовке контрольной работы по разделу «Математика» необходимо придерживаться следующих рекомендаций.

Во-первых, можно пользоваться любыми доступными изданиями по высшей математике, раскрывающими соответствующие темы. Список рекомендуемой литературы приведён в приложении 4.

Во-вторых, о логике изложения. Решение задач должно быть логически стройным, т.е. содержать однозначную минимальную последовательность операций, обеспечивающую получение для заданных исходных данных искомого результата. Сопутствующие сведения, затрудняющие понимание главного, опускаются. Это в равной мере относится как к тексту, так и к иллюстрациям.

В-третьих, о способе решения. Большая часть задач контрольной работы по разделу «Математика» (№№ 1, 3, 4, 5, 6, 9) ориентирована на использование математического аппарата теории множеств. Поэтому будет уместной иллюстрация решения таких задач с помощью диаграмм Венна.

Проиллюстрируем эту рекомендацию примером выполнения задач данного типа.

Задача 1. Даны два множества: А = {6 k + 5ï k = 0, 1, 2, …} и B = {3 m + 2 ï m = 0, 1, 2, …}. Найти: а) А È В; б) А Ç В; в) В \ А; г) А \ В; д) AB.

Решение

Определим, какие элементы принадлежат множествам:

А = {5, 11, 17, 23, 29, …}; B = {2, 5, 8, 11, 14, 17, …}.

Проиллюстрируем данные множества с помощью диаграмм Венна:

 
 

 

 


Найдём объединение, пересечение, разность и симметрическую разность множеств:

а) А È В = В;

б) А Ç В = А;

в) В \ А = {2, 8, 14, 20, … } = {6 k + 2 ï k = 0, 1, 2, …};

г) А \ В = Æ;

д) AB = {2, 8, 14, 20, …} = {6 k + 2 ï k = 0, 1, 2, …}.

Задача 3. Даны три множества: А - множество натуральных чисел, делящихся нацело на 6; B - множество натуральных чисел, делящихся нацело на 10; С - множество натуральных чисел, делящихся нацело на 21. Определить, принадлежит ли число s = 420 множеству D = (А \ В) È (А Ç C) È (B Ç C)? Показать это число на диаграмме Венна, иллюстрирующей множество D.

Решение

Определив делимость числа 420 на 6, 10, 21, установим его принадлежность заданным множествам: 420 Î А, 420 Î В, 420 Î С. Отметив факт принадлежности числа множеству знаком «+», заполним табл. 1. Результат - в последнем столбце первой строки табл. 1.

Таблица 1

s А В С А \ В А Ç C B Ç C D
  + + + - + + +

Из диаграммы Венна (рис. 1) заключаем, что множество D изображается объединением заштрихованных областей, а число 420 принадлежит области пересечения множеств А, В и С.

 
 

 


Рис. 1

Задача 4. Из 20 студентов двое могут играть только в шахматы, трое – только в шашки, шестеро – только в футбол. Никто не умеет играть во все три игры. Один играет в шахматы и шашки, трое - в футбол и шахматы. Сколько студентов умеют играть в футбол и шашки?

Решение

Обозначим через А множество студентов, играющих в шахматы, через В - в шашки, через С - в футбол.

По условию задачи: | А È В È С | = 20, | А Ç В | = 1, | А Ç С | =3, А Ç В Ç С = = Æ (никто не умеет играть сразу в три игры). Требуется определить количество элементов в пересечении В Ç С.

Изобразим эти множества на диаграмме Венна (рис. 2).

Из диаграммы видно, что множество В Ç С должно содержать 20 – 1 – 2 – 3 – 6 – 3 = 5. Значит, играть в футбол и шашки умеют 5 студентов.

 
 

 

 


Рис. 2

Задача 5. Если N – множество натуральных чисел, М - множество положительных чисел, Р - множество простых чисел, Q - множество положительных нечётных чисел. Указать истинность высказываний: а) ; б) ; в) ; г) .

Решение

Для указанных множеств справедливо: , Графическая иллюстрация:

 
 

 

 


Тогда

а) , , т.е. ложно;

б) , , т.е. истинно;

в) , , , т.е. ложно;

г) , , т.е. ложно.

Задача 6. Даны два множества: А = {2 k ï k = 0, 1, 2, …} и B = {2 m + 1ï m = 0, 1, …}. Установите, является ли соответствие f: A ® B, заданное формулой b = a +1, взаимно однозначным.

Решение

Проиллюстрируем возможность установления взаимного однозначного соответствия:

 

 
 
Является.

 


Задача 9. Правильно ли рассуждение, имеющее форму: «Все х являются у и ни одно х не является z; значит, все у не являются z»?

Решение

Построим диаграммы Венна, характеризующие посылки и заключение:

 

Из рис. видно, что возможно неверное заключение, удовлетворяющее исходным посылкам. Следовательно, рассуждение не является правильным.

В-четвёртых, об использовании определений. Решение задач № 2 и № 7 предполагает практическую иллюстрацию терминов «декартово произведение множеств» и «область определения функции». Приведём соответствующие примеры.

Задача 2. Даны два множества: А = {1, 2} и B = {4, 7, 8}. Найти декартово произведение: а) А ´ В; б) В ´ А.

Решение

Декартовым (или прямым) произведением А ´ В двух множеств А и В называется множество всех упорядоченных пар (a, b), где а Î А, b Î В.

Тогда

А ´ В = {(1, 4), (1, 7), (1, 8), (2, 4), (2, 7), (2, 8)};

В ´ А = {(4, 1), (4, 2), (7, 1), (7, 2), (8, 1), (8, 2)}.

Задача 7. Найти область определения функции .

Решение

Под областью определения функции подразумевается естественная область определения, т.е. те значения х &







Дата добавления: 2015-09-19; просмотров: 2490. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия