Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание 3. Метод Кранка-Николсона





 

В методе Кранка-Николсона экспоненциал матрицы и интеграл аппроксимируются с большей точностью, чем в методе Эйлера:

Подставляя данные выражения в уравнение, получим:

 

 

Умножая слева на получаем:

 

Выражение в правой части считается явно, чтобы найти v(t+dt) нужно дважды решить систему линейных алгебраических уравненений. Это делается методом прогонки.

 

Исходный код программы:

 

#include<iostream>

#include<math.h>

#include<cstdlib>

#include<cstdio>

 

using namespace std;

 

#define sqr(x) ((x) * (x))

 

const int Nx = 40;

const double Nt = 6000;

 

 

double alpha, beta; double dx;

 

double a [Nx], b [Nx], c[Nx];

 

//Умножение вектора u на матрицу (E + lambda*A):

void matrix(double *u, double lambda) {

 

double dx = 1 / double(Nx);

double alpha = -1.0;

double beta = -2.0 + (1 - dx / 2) / (1 + dx / 2);

 

double v [Nx];

for (int i=1; i<Nx-1; i++) {

v[i] = u[i] + lambda * (u[i - 1] - 2.0 * u[i] + u[i + 1]) /sqr(dx) * D;

 

}

v[0] = u[0] + lambda * (beta * u[0] - u[1]) /sqr (dx) * D;

v[Nx - 1] = u[Nx - 1] + lambda * (u[Nx - 2] + u[Nx - 1] * alpha) /sqr (dx) * D;

 

for (int i = 0; i < Nx; i++) u[i] = v[i];

}

 

//Метод прогонки:

void sweep(double *u) {

for (int j = 0; j < Nx - 1; j++){

 

double w = b[j] / a[j];

a[j + 1] -= c[j] * w;

u[j + 1] -= u[j] * w;

}

for (int j = Nx - 1; j > 0; j--) {

double w = c[j - 1] / a[j];

u[j - 1] -= u[j] * w;

u[j] /= a[j];

}

u[0] /= a[0];

}

 

 

int main() {

 

double l=1, tau=1;

double xx = 2 * l / 3.0;

double tt = 5 * tau; //момент выхода из цикла по t

double dx = 1 / double(Nx);

double dt = tau / Nt;

double alpha = -1.0;

double beta = -2.0 + (1 - dx / 2) / (1 + dx / 2);

double D = sqr(l) / tau;

 

double u[Nx];

 

 

//задание начальных условий:

for (int i = 0; i < Nx; i++) {

u[i] = fabs((i + 0.5) * dx - (2*l/3.0)) < l / 10.0? 1.0: 0.0;

}

 

freopen("krahk_nicholson_t", "w", stdout);

 

int Ntt = tt / dt;

 

//Вычисление u в точке 2*l/3:

for (int i = 0; i < Ntt; i++) {

if (i < Nt)

cout << dt * i << " " <<

u[(int) (xx / l * double(Nx))] - (1 - exp(-i * dt / tau))<< '\n';

 

 

double q = 1.0 / tau * exp(-1 * i * dt / tau); //источник тепла в уравнении

double qq = exp(-1 * dt / tau);

 

 

//Вычисление правой части основной формулы:

double v[Nx], w[Nx], p[Nx];

for (int j = 0; j < Nx; j++) v[j] = u[j]; //v(t)

matrix(v, dt / 2);

matrix(v, dt / 2);

 

for (int j = 0; j < Nx; j++) w[j] = qq * q * dt / 2.0; //q(t+dt)

matrix(w, -dt / 2);

matrix(w, -dt / 2);

 

for (int j = 0; j < Nx; j++) p[j] = q * dt / 2.0; //q(t)

matrix(p, -dt / 2);

matrix(p, dt / 2);

 

 

for (int j = 0; j < Nx; j++) v[j] += w[j] + p[j];

 

//вычисление коэффициентов трехдиагональной матрицы:

for (int j = 0; j < Nx - 1; j++) {

a[j] = 1.0 + dt / sqr(dx) * D; b [ j ] = c [j] = -dt / sqr(dx) / 2 * D;

}

a[0] = 1 - dt * beta / 2 / sqr(dx) * D;

a[Nx - 1] = 1 - dt * alpha / 2 / sqr(dx) * D;

 

sweep(v);

 

//вычисление коэффициентов трехдиагональной матрицы:

for (int j = 0; j < Nx - 1; j++) {

a[j] = 1.0 - dt / sqr(dx) * D; b [j] = c [j] = +dt / sqr(dx) / 2 * D;

}

a[0] = 1 + dt * beta / 2 / sqr(dx) * D;

a[Nx - 1] = 1 + dt * alpha / 2 / sqr(dx) * D;

 

sweep(v);

 

 

for (int j = 0; j < Nx; j++) u[j] = v[j];

}

 

 

freopen("krank_nicholson_x", "w", stdout);

 

// зависимость от x:

 

for (int i = 0; i < Nx; i++) {

 

cout << (i + 0.5) * dx << " " << u[i] - (1 - exp(- 1.0 * tt / tau)) << "\n";

}

 

return 0;

 

}

 

При построении данных графиков для обеспечения устойчивости нам хватило Nx=40; Ny=6000.

 

 

 

 

Вывод:

Мы получили решение исходной задачи тремя методами. Графики решений соответствуют физическому смыслу задачи и достаточно хорошо соответствуют друг другу.

Метод суммирования ряда Фурье самый простой по сложности реализации и самый быстрый, но он требует полного аналитического решения задачи, и в этом смысле достаточно трудоемкий. Он вполне годится для построения графиков уже известных решений.

Явный метод Эйлера и метод Кранка-Николсона более сложны в написании и работают медленнее, особенно метод Кранка-Николсона, требующий большого количества вычислений на каждом шаге, но эти методы не требуют знания решения уравнения. Они также позволяют построить график решения с требуемой точностью. Пожалуй, самым эффективным является явный метод Эйлера, так как он требует гораздо меньше вычислений, чем метод Кранка-Николсона, хотя количество разбиений по времени в нем гораздо больше, и дает вполне приемлемую точность. Метод Кранка-Николсона гораздо более дорогой, но он обеспечивает нам безусловно устойчивое решение при достаточно малом количестве точек разбиения по времени.

 







Дата добавления: 2015-09-15; просмотров: 780. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия