Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИТЕРАЦИОННЫЕ ЦИКЛЫ





Такие алгоритмы характеризуются последовательным приближением вычисляемых величин к искомому значению. Окончание цикла в этом случае обычно осуществляется при достижении заданной точности вычисления результата. К итерационным циклам приводят задачи вычисления сумм бесконечных рядов, реализации численных методов решения уравнений, систем уравнений, задачи оптимизации.

Рассмотрим правила составления итерационных циклических алгоритмов на примере вычисления суммы бесконечного ряда. Задача при этом сводится к нахождению с погрешностью, не превышающей , суммы

,

каждое слагаемое которой является функцией номера , а также может являться функцией одного или нескольких дополнительных параметров.

Задача нахождения такой суммы является типичным примером итерационного процесса, так как заранее не известно, при каком номере слагаемого будет достигнута требуемая точность.

Вычисление суммы членов бесконечного ряда возможно лишь в том случае, если получаемая в результате циклического процесса последовательность s(1), s(2), …, s(i), … сходится к своему предельному значению S, т.е. существует предел . Здесь s(i) – сумма i членов бесконечного ряда.

Процесс вычисления суммы членов равномерно сходящегося ряда организуется в виде циклического алгоритма, когда при каждом прохождении цикла номер слагаемого i увеличивается на единицу, а сумма изменяется на величину i-го слагаемого, т.е. , где и - суммы i и i-1 слагаемых. Приведенное выше соотношение в алгоритме вычисления записывается следующим образом: S=S+f(i), что означает добавление слагаемого с номером i к значению суммы, вычисленному на предыдущем шаге алгоритма, и присвоение вычисленного значения S+f(i) той же переменной S. Начальное значение S должно быть равно нулю, в этом случае после первого выполнения цикла значение S будет равно значению первого слагаемого. Суммирование считается законченным при выполнении условия , т.е. если значение очередного вычисленного члена ряда меньше величины погрешности.

Задача 4.







Дата добавления: 2015-09-15; просмотров: 335. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия