Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 1. Шифр зачетной книжки ___________________ группа ______________





 

Студент(ка) __________________________________________________

Специальность________________________________________________

Специализация________________________________________________

Форма обучения _________________________ курс ________________

Шифр зачетной книжки ___________________ группа ______________

 

 

Место прохождения практики___________________________________

_____________________________________________________________

 

 

Руководитель практики (в организации)______________ (__________)

 

Руководитель практики от МГУТУ _________________ (___________)

 

Отчет выполнил(а) ________________________________(___________)

 

М.П.

Организации/

Предприятия

 

В данном файле находятся титульный и завершающий лист отчёта о преддипломной практике студента. Отчёт должен быть составлен не менее чем на 7 листах рукописного текста. В отчёте должна быть подробно отражена информация о предприятии, вся работа, которую Вы выполняли в процессе прохождения преддипломной практики, знания и навыки, полученные в процессе прохождения преддипломной практики, Ваше отношение к предприятию и роду деятельности предприятия, на котором Вы проходили преддипломную практику.

Завершающий лист должен содержать подпись руководителя предприятия (Руководителя практики, судьи, начальника отдела кадров предприятия, нотариуса и т.д.

 

ТЕКСТ ОТЧЕТА И ПРИЛОЖЕНИЯ

Предисловие

 

На календаре 13 мая 1832 года. В рассветной дымке два молодых француза стоят друг против друга с пистолетами в руках. Дуэль — из-за молодой женщины. Выстрел; один из юношей падает смертельно раненным на землю. Ему всего 21 год; перитонит убивает его через два дня, и его хоронят в общей могиле. Одна из наиболее важных идей в истории математики и науки едва не погибает вместе с ним.

Оставшийся в живых дуэлянт так и остался неизвестным; погибший же — Эварист Галуа, политический революционер, одержимый математикой. В полном собрании его работ едва наберется шестьдесят страниц, и тем не менее наследие Галуа произвело революцию в математике. Он изобрел язык, позволяющий описывать симметрии в математических структурах и выводить их следствия.

Сегодня этот язык, известный как «теория групп», используется во всей чистой и прикладной математике, причем отвечает за формирование закономерностей в физическом мире. Симметрия играет центральную роль на передовых рубежах физики, в квантовом мире сверхмалого и релятивистском мире сверхбольшого. Симметрия может даже проложить дорогу к долгожданной «Теории Всего» — математическому объединению двух ключевых направлений в современной физике. И все это началось с простого вопроса по алгебре — вопроса о решениях математических уравнений, то есть о нахождении «неизвестного» числа на основе нескольких математических подсказок.

Симметрия — это не число и не форма, но специальный вид преобразований, то есть некоторый способ «шевелить» объект. Если объект выглядит неизменным после преобразования, то данное преобразование представляет собой симметрию. Например, квадрат выглядит так же, как раньше, если его повернуть на прямой угол.

Эта идея — серьезно расширенная и усовершенствованная — лежит в основе того, как современная наука понимает вселенную и ее происхождение. Теория относительности Альберта Эйнштейна основана на принципе, согласно которому законы физики должны оставаться неизменными во всех точках пространства и с течением времени. Другими словами, законы должны быть симметричны относительно движений в пространстве и течения времени. Квантовая физика говорит нам, что все во вселенной состоит из набора очень маленьких «фундаментальных» частиц. Поведение этих частиц управляется математическими уравнениями — законами природы, и эти законы снова обладают симметриями. Частицу можно математически преобразовать в совсем другие частицы, и эти преобразования также оставляют законы физики неизменными.

Все эти концепции — как и самые последние, относящиеся к рубежам современной физики, — не были бы открыты без глубокого математического понимания симметрии. Такое понимание пришло из чистой математики; роль симметрии в физике проявилась позднее. Чрезвычайно полезные идеи могут возникать из чисто абстрактных рассуждений — нечто вроде того, что физик Юджин Вигнер назвал «непостижимой эффективностью математики в естественных науках». Когда дело касается математики, мы порой получаем на выходе больше, чем вкладывали изначально.

Начиная с писцов древнего Вавилона и заканчивая физиками двадцать первого столетия, «Почему в красоте правда» повествует, как математики наткнулись на концепцию симметрии и как казавшийся бесцельным поиск формул, которых, как выяснилось, вообще не существует, открыл новое окно во вселенную и произвел переворот в естественных науках и математике. Говоря более широко, история симметрии иллюстрирует, как культурное влияние и историческую непрерывность великих идей можно выпукло отразить на фоне как политических, так и научных сдвигов и переворотов.

 

Первая половина книги может на беглый взгляд показаться вовсе не имеющей отношения к симметрии и лишь вскользь относящейся к реальному физическому миру. Причина в том, что в качестве доминирующей идеи симметрия появилась не так, как можно было бы этого ожидать, — т.е. не через геометрию. Вместо этого глубинно прекрасная и жизненно необходимая концепция симметрии, которой сегодня пользуются математики и физики, пришла к нам из алгебры. Поэтому значительная часть данной книги описывает поиск решений алгебраических уравнений. Может показаться, что это сугубо технический момент, однако в действительности это поистине захватывающее приключение, многие из ключевых участников которого прожили необычные и драматические жизни. Математики — живые люди, пусть даже иногда они теряются за своими абстрактными размышлениями. Некоторые из них могут позволить логике слишком сильно вмешиваться в их жизнь, но мы снова и снова будем убеждаться, что нашим героям не чуждо ничто человеческое. Мы увидим, как они жили и умирали, прочтем об их любовных историях и дуэлях, жестоких спорах из-за приоритета, сексуальных скандалах, пьянстве и болезнях, а по ходу дела увидим, как пробивали себе дорогу их математические идеи, изменявшие мир.

Начиная с десятого столетия до Рождества Христова и вплоть до кульминации в начале XIX века, связанной с фигурой Галуа, повествование шаг за шагом поведет нас по пути завоевания уравнений — дороге, которая в конце концов зашла в тупик, когда математики попытались победить так называемую «квинтику» — уравнение, в которое входит пятая степень неизвестного. Перестали ли их методы работать из-за того, что в уравнении пятой степени крылись какие-то фундаментальные отличия? Или же можно было найти похожие, но более мощные методы, с помощью которых удалось бы получить формулы для его решения? Застряли ли математики из-за того, что встретили настоящую преграду, или им просто отказала сообразительность?

Важно понимать, что факт существования решений уравнений пятой степени был достоверно установлен. Вопрос состоял в том, всегда ли их можно представить алгебраической формулой. В 1821 году молодой норвежец Нильс Хенрик Абель доказал, что уравнение пятой степени нельзя решить алгебраическими средствами. Его доказательство, однако, было несколько таинственным и довольно непрямым. Он доказал, что никакого общего решения быть не может, но при этом оставалось непонятно почему.

Именно Галуа открыл, что невозможность решения уравнения пятой степени вытекает из симметрий этого уравнения. Если эти симметрии проходят, так сказать, тест Галуа (это означает, что они устроены некоторым очень специальным образом, который я не буду объяснять прямо сейчас), то уравнение можно решить с помощью алгебраической формулы. Если симметрии не проходят тест Галуа, то никакой такой формулы нет.

Общее уравнение пятой степени нельзя решить с помощью формулы, потому что у него неправильные симметрии.

 

Это эпического масштаба открытие составляет второй сюжет данной книги — сюжет группы, т.е. математического «исчисления симметрий». Галуа перенял древнюю математическую традицию — алгебру — и развил ее, создав новый инструмент для изучения симметрии.

Пусть пока что слова вроде «группы» останутся необъясненным специальным жаргоном. Когда значение таких слов станет важным для нашего рассказа, я приведу все необходимые пояснения. Но иногда нам будет требоваться всего лишь подходящий термин, чтобы иметь ориентиры в нашем рассказе. Если вы наткнетесь на что-то в этом роде — на то, что выглядит как профессиональный жаргон, но непосредственно не объясняется, — отнеситесь к этому просто как к указателю на нечто полезное, чей конкретный смысл пока не играет большой роли. Иногда это значение будет проясняться по мере дальнейшего чтения. «Группа» — как раз такой случай, но мы поймем, что это такое, не раньше, чем дойдем до середины книги.

Наш рассказ также затрагивает вопрос о любопытной значимости в математике некоторых конкретных чисел. Я говорю сейчас не о фундаментальных физических постоянных, а о математических постоянных, таких как π (греческая буква пи). Скорость света, например, могла бы в принципе иметь любое значение, но так случилось, что в нашей вселенной она составляет 300 000 метров в секунду. С другой стороны, число π имеет значение, немногим большее, чем 3,14159, и ничто в мире не может его изменить.

Неразрешимость уравнений пятой степени говорит нам, что, как и π, число 5 также довольно необычно. Это наименьшее число, для которого соответствующая группа симметрии не проходит тест Галуа. Другой занятный пример — это последовательность чисел 1, 2, 4, 8. Математики открыли серию расширений концепции обычных «вещественных» чисел — сначала строятся комплексные числа, а затем нечто, называемое кватернионами и, далее, октонионами. Они соответственно конструируются из двух экземпляров вещественных чисел, из четырех экземпляров и из восьми экземпляров. Кто же следующий? Естественная догадка — 16, но на самом деле дальнейших разумных расширений числовых систем нет. Это замечательный и глубокий факт. Он говорит нам, что число 8 — особенное, причем не в каком-нибудь поверхностном смысле, а в терминах глубинных структур самой математики.

Кроме чисел 5 и 8 в этой книге появятся некоторые другие, среди которых надо в первую очередь отметить 14, 52, 78, 133 и 248. Эти любопытные числа представляют собой размерности пяти «исключительных групп Ли», и их влияние пронизывает всю математику и значительную часть математической физики. Эти числа — главные действующие лица в математической драме, тогда как другие числа, с первого взгляда мало чем отличающиеся, — всего лишь статисты.

Математики открыли, насколько эти числа особенные, в конце девятнадцатого столетия, когда родилась современная абстрактная алгебра. Существенны не числа сами по себе, но роль, которую они играют в основаниях алгебры. С каждым из этих чисел связан математический объект, называемый группой Ли и обладающий уникальными и замечательными свойствами. Эти группы играют фундаментальную роль в современной физике, они связаны с глубокими структурами пространства, времени и материи.

 

Это и подводит нас к заключительному сюжету — фундаментальной физике. Физики давно задавались вопросом, почему пространство имеет три измерения, а время — одно; иными словами, почему мы живем в четырехмерном пространстве-времени? Теория суперструн — самая современная попытка объединить всю физику в единое целое, управляемое набором взаимосогласованных законов — привела физиков к вопросу, может ли пространство-время иметь дополнительные «скрытые» измерения. Идея может показаться бредовой, но у нее имеются неплохие исторические прецеденты. Из всех свойств теории суперструн присутствие дополнительных измерений вызывает, наверное, меньше всего возражений.

Куда больше вопросов вызывает другое свойство — вера в то, что формулировка новой теории пространства и времени зависит главным образом от той математики, на которой основаны теория относительности и квантовая теория — два столпа, на которых покоится современная физика. Объединение этих взаимно противоречащих теорий воспринимается как математическое упражнение, а не как процесс, требующий новых революционных экспериментов. Ожидается, что математическая красота сыграет роль необходимого предварительного условия для физической истины. Это допущение может таить в себе опасность. Важно не потерять из виду физический мир, так что, какая бы теория в конце концов ни родилась из современных построений и какой бы замечательной ни была ее математическая родословная, она не освобождается от проверки экспериментами и наблюдениями.

Как бы то ни было, на данный момент имеются веские причины придерживаться математического подхода. Одна такая причина состоит в том, что до тех пор, пока по-настоящему убедительная объединенная теория не сформулирована, никто не знает, какие эксперименты осуществлять. Другая причина в том, что математическая симметрия играет фундаментальную роль как в теории относительности, так и в квантовой теории — в двух областях, демонстрирующих значительный дефицит взаимно согласованных позиций, — так что особую ценность приобретают любые, пусть даже совсем небольшие области, в которых такой согласованности удается добиться. Возможные структуры пространства, времени и материи определяются своими симметриями, и некоторые из наиболее важных возможностей могут быть связаны с исключительными структурами в алгебре. Может быть, пространство-время обладает теми свойствами, которые мы наблюдаем, потому что математика допускает к участию в финальном туре только небольшое число специальных форм. Если так, то вполне разумно прислушиваться к тому, что говорит математика.

Почему вселенная выглядит столь математической? На этот вопрос предлагались разнообразные ответы, но ни один из них не кажется мне достаточно убедительным. Отношения симметрии между математическими идеями и физическим миром, равно как и симметрия между нашим чувством красоты и наиболее глубокими и важными математическими формами, представляют собой глубокую и, быть может, неразрешимую загадку. Никто из нас не знает, почему красота есть истина, а истина — красота. Все, что нам остается, — это созерцать бесконечное разнообразие их взаимоотношений.

 

Глава 1







Дата добавления: 2015-09-18; просмотров: 497. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия