Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ГЛОССАРИЙ. 1. Математика в Открытом колледже http://www.mathematics.ru


1. Математика в Открытом колледже http://www.mathematics.ru

2. Math.ru: Математика и образование http://www.math.ru

3. Московский центр непрерывного математического образования (МЦНМО) http://www.mccme.ru

4. Allmath.ru — вся математика в одном месте http://www.allmath.ru

5. EqWorld: Мир математических уравнений http://eqworld.ipmnet.ru

6. Exponenta.ru: образовательный математический сайт http://www.exponenta.ru

 

Лабораторное занятие № 2

Тема: Решение систем линейных уравнений

с помощью формул Крамера (2 час.)

Учебно-познавательные цели занятия:

ознакомиться с методикой решения систем линейных уравнений с помощью формул Крамера

Воспитательные цели: Развивать алгоритмическую культуру студентов, повышать интерес к предмету в процессе решения задач

Развивающаяцельразвитие творческих способностей студентов.

На лабораторном занятии формируются понятия:

- решения системы линейных уравнений:

- совместной, несовместной, определенной и неопределенной систем;

На занятии формируются знания:

- формул Крамера;

умения:

- вычислять определители различными способами;

- решать системы линейных уравнений методом Крамера

навыки:

- аргументированного письменного изложения собственной точки зрения;

- критического восприятия информации

компетенции:

- ОК-1 владение культурой мышления, способностью к восприятию, обобщению и анализу информации, постановке цели и выбору путей ее достижения;

- ОК-2 умением логически верно, аргументированно и ясно строить устную и письменную речь;

- ОК-11 способностью представить современную картину мира на основе естественнонаучных, математических знаний, ориентироваться в ценностях бытия, жизни, культуры;

- ПК-1 - способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;

- ПК-25 - способностью к обобщению и статистической обработке

Материально-техническое оборудование:

мультимедийный проектор, ноутбук, презентация «Решение систем линейных уравнений методом Крамера».

ПЛАН ЗАНЯТИЯ

1. Инструктаж по ТБ.

2.Проверка знаний студентов — их теоретической готовности к выполнению заданий по каждой из следующих тем:

Система трех линейных уравнений с тремя неизвестными;

Решение системы трех линейных уравнений с тремя неизвестными методом Крамера;

3. Общее описание задания.

4. Выполнение заданий.

5. Оформление отчета о лабораторной работе.

6. Анализ

 

ГЛОССАРИЙ

№ п/п Новые понятия Содержание
     
  Обратная матрица для квадратной матрицы А Обратной матрицей для квадратной матрицы A называется матрица A -1, такая, что верно равенство: A×A -1= A -1× A = E.
  Вырожденная и невырожденная матрицы Квадратная матрица называется вырожденной, если ее определитель равен нулю, в противном случае матрица называется невырожденной.
  Решение системы линейных уравнений Решением системы линейных уравнений называется упорядоченный набор n чисел, при подстановке которых вместо переменных в систему, каждое уравнение обращается в верное равенство.
  Формулы Крамера
  Элементарные преобразования   К элементарным преобразованиям относят: перестановку 2-х уравнений; умножение уравнения на число, отличное от нуля; прибавление к одному уравнению другого уравнения, умноженного на какое-либо число; вычеркивание уравнения вида .
  Теорема Кронекера-Капелли Система линейных уравнений имеет решение тогда и только тогда, когда ранг матрицы системы равен рангу ее расширенной матрицы.

 




<== предыдущая лекция | следующая лекция ==>
Системы n линейных уравнений c n неизвестными. | 

Дата добавления: 2015-09-18; просмотров: 362. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия