Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Системы n линейных уравнений c n неизвестными.





Общий вид системы уравнений (m=n):

(4).

Матрица А такой системы является квадратной: А= (5) и она имеет определитель Δ, который называется определителем системы.

 

Метод Крамера

Теорема (правило Крамера). Пусть Δ; — определитель матрицы — определитель матрицы системы А, а Δ; j — определитель, полученный из определителя Δ;заменой j-го столбца столбцом свободных членов В. Тогда, если Δ 0, тосистема линейных уравнений (4) имеет единственное решение, определяемое по формулам

xi = Δj / Δ;, j= 1,2,…,n. (7)

Формулы вычисления неизвестных (7) носят название формул Крамера.

Правило Крамера можно использовать, только когда определитель системы Δ;не равен нулю.

Пример: Решить, используя правило Крамера, систему уравнений:

Решение:

Δ= = = =-11 0

Вычислим дополнительные определители и значения неизвестных:

Δ1= = = - =-22; x 1 = Δ;1 / Δ; = (-22)/(-11)= 2.

Δ2= = = =11; x2 = Δ2 / Δ; = 11/(-11)=-1.

Δ3= = = =-11; x 3 = Δ;3 / Δ; = (-11)/(-11)=1.

Путем подстановки можно проверить, что полученное решение Х=(2,-1,1) является верным.

Контрольные вопросы (ОК-1, ОК-2, ОК-11, ПК-1):

1. Что такое определитель системы линейных уравнений?

2. Какие системы называются совместными, несовместными, опре­делёнными, неопределёнными, однородными, неоднородными?

3. Что такое решение системы?

4. Приведите формулы Крамера для решения систем линейных уравнений

5. Какие системы могут быть решены по формулам Крамера?

 

Практические задания общие (ОК-1, ОК-2, ОК-11, ПК-1):

Пример 1. ( ОК-1, ОК-2, ОК-11): Решить систему

Решение:

Вычислим определитель основной матрицы системы:

Оставим без изменения первую строку (здесь элемент а11 =1). Получим в первом столбце нули. Воспользуемся свойством 7. Сначала элементы 1-ой строки умножим на (-2) и сложим полученные элементы со 2-ой строкой. Затем умножим элементы 1-ой строки на (-3) и сложим с 3-ей строкой. Умножим на (-1) и сложим с 4-ой строкой. Получим определитель, в котором в 1-ом столбце все элементы, кроме а11, равны нулю.

Проведем разложение по первому столбцу.

=

Так как =35 ≠ 0, то система имеет единственное решение и формулы Крамера можно применить.

Вычисляем определители:

; ;

; .

Следовательно,

х1 = = = 2, х2 = = = - 1,

х3 = = = 0, х4 = = = - 2.

Замечание. В случае, когда число неизвестных n велико, практическое использование формул Крамера затруднено в связи с необходимостью большого числа вычислений. Кроме того, что самое главное, в случае, когда коэффициенты уравнений системы заданы приближенно (в практических задачах бывает почти всегда), погрешность решения может быть весьма велика. Поэтому при практическом решении системы уравнений формулы Крамера используют редко.

2. Решить систему по формулам Крамера ( ОК-1, ОК-2, ОК-11)

3. Решить системы уравнений методом Крамера ( ОК-1, ОК-2, ОК-11):

а) б) в)

г) д)

Индивидуальные задания ( ОК-1, ОК-2, ОК-11, ПК-1):

№1. Решите системы линейных уравнений, применяя метод Крамера:

1. 2.

3.

4. 5.

6. 7.

8. 9.

10.

Рекомендуемое содержание отчета (для студента).

1. Название лабораторной работы

2. Цель и задачи исследований

3. Электронно-вычислительные средства для расчетов

4. Журнал (тетрадь) исследований (вычислений) с обработкой полученных данных в виде таблиц, графиков (по требованию)

5. Выводы

6. Анализ и защита лабораторной работы производится по результатам представленного студенческой группой отчета (перечень сделанного, рекомендации, ответы на рассмотренные в процессе выполнения контрольные вопросы)

Преподаватель оценивает знание каждого студента.

 

Литература







Дата добавления: 2015-09-18; просмотров: 376. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия