Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Системы линейных алгебраических уравнений





Общий вид системы линейных алгебраических уравнений следующий:

(2),

где а ij, i=1,...m; j=1,…n—неизвестные величины, называемые коэффициентами системы уравнений. Первый индекс означает номер уравнения, второй—номер неизвестного, при котором стоит коэффициент; bi, i=1,…m—известные величины, называемые свободными членами, или правыми частями уравнений; xj, j=1,…n—неизвестные переменные величины (или просто неизвестные).

Система (2)— система линейных уравнений, т.к. все неизвестные входят во все уравнения только в первой степени.

Матрица А, составленная из коэффициентов системы, называется матрицей системы.

Матрица системы, дополненная столбцом свободных членов А│В, называется расширенной матрицей системы:

А= , А│В=

Систему (2) можно записать в матричном виде АХ=В,

где Х= ; В= (3).

Набор чисел 1, 2,…, nрешение системы, если при подстановке x1= 1; x2= 2;…, xn= n все уравнения системы превращаются в верные тождества.

Решить систему значит найти все её решения или доказать, что не существует ни одного её решения. Если решений бесконечное множество, то указать способ нахождения каждого из них.

Система линейных уравнений называется совместной, если она имеет хотя бы одно решение.

Система, не имеющая ни одного решения, называется несовместной.

Если совместная система имеет единственное решение, то она называется определённой, а если более одного решения, то неопределенной.

Две системы алгебраических линейных уравнений называют эквивалентными или равносильными, если они имеют одно и то же множество решений.







Дата добавления: 2015-09-18; просмотров: 360. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия