В. В. Аннинская
Учебное пособие РедакюрС В Процко Корректор /7 Е Круковскии Ответственный за выпуск А Ф Мясников Подписано в печать с готовых диапозшивов 16 09 2003 Формат 60x84'/к, Бумага для офсетной печати 1арнигура 1аймс Печать офсетная Уч-издл 28,83 Уел печ л 37 34 1иражЗЮ0экз Заказ 2030 Научно-техническое общество с ограниченной отве[ственносгью 'ТсфаСистемс' Лицензия ЛВ № 76 от 19 11 2002 220116 г Минск, а/я 139 (тел 219-74-01, Ь-mail books@tut by, http //www ts by) Республиканское унитарное предприятие «Издательство Белорусский Дом печаш"» 220013, г Минск, проспект Ф Скорины, 79
OCR: Мельников А.С. 13.07.06
Задача По трем населенным пунктам имеются следующие данные:
Определить среднее значение каждого признака. Решение. 1) Используем формулу средней арифметической простой:
2) Используем формулу средней арифметической взвешенной:
3) Используем формулу средней арифметической взвешенной:
Ответ: г) 81,7; 60,1; 75,5. Задача В отчетном году по городу розничный товарооборот увеличился на 9%. Прирост товарооборота за счет роста объема продаж составил 3%. Определить, на сколько процентов увеличился розничный товарооборот за счет роста цен. Решение. По условию,
Требуется определить индекс цен Используем взаимосвязь индексов:
Находим
то есть в отчетном году за счет роста цен розничный товарооборот увеличился на 5,8% (105,8 – 100). Ответ: в) 5,8%. Задача Количество пряжи, выработанной поддельным цехом фабрики, увеличилось по сравнению с прошлым годом в полтора раза, а количество пряжи, вырабатывавшейся за 1 чел/час, возросло на 10%. Определить, как изменилось общее число отработанных чел/часов. Решение. Общее количество выработанной пряжи
Следовательно, между соответствующими им индексами существует аналогичная взаимосвязь:
По условию,
то есть общее число отработанных человеко-часов увеличилось в 1,36 раза. Ответ: г) увеличилось в 1,36 раза.
Задача Доля бракованной продукции в 1 партии изделий составила 1%, во 2 партии - 1,5%, а в третьей - 2%. Первая партия составляет 35% всей продукции, вторая - 40%. Определить средний процент бракованной продукции. Решение. По данным задачи составим таблицу.
Средний процент бракованной продукции определим по формуле средней арифметической взвешенной:
Ответ: б) 1,45%. Задача редний возраст жителей одного из регионов 30 лет. При этом средний возраст сельских жителей, которые составляют 60% всех жителей, 32 года при Решение. По условию,
Найдем удельный вес городских жителей в общем числе жителей региона:
Вычислим общую дисперсию
где
Отсюда, общая дисперсия будет:
Ответ: б) 61,0.
Задача При анализе себестоимости единицы продукции получили Решение. По условию,
Требуется определить коэффициент вариации себестоимости.
Среднее квадратическое отклонение:
Ответ: а)16%. Задача Имеются следующие данные по трем предприятиям отрасли за 2 периода:
Определить фондоотдачу в среднем по предприятиям в базисном и отчетном периоде. Решение. Фондоотдача
где
1) Для вычисления среднего уровня фондоотдачи в базисном периоде используем формулу средней гармонической взвешенной:
2) Для вычисления среднего уровня фондоотдачи в отчетном периоде используем формулу средней арифметической взвешенной:
Ответ: в) 82,19; 84,00. Задача По трем предприятиям отрасли имеются следующие данные;
Определить среднее значение каждого признака. Решение. 1) Используем формулу средней арифметической простой:
2) Используем формулу средней гармонической взвешенной:
3)
Ответ: б) 1573,3; 4,7; 8,5. Задача Методом собственно случайной бесповторной выборки обследовано 100 ящиков деталей. По данным выборки средней процент бракованных деталей оказался равным 3,64%, а среднее квадратическое отклонение 1,6%. Определить, с вероятностью равной 0,954 (t = 2), предельные значения генеральной средней. Решение. По условию,
Доверительный интервал:
С вероятностью 0,954 можно утверждать, что средний процент бракованных деталей в генеральной совокупности, находится в пределах от 3,32% до 3,96%. Ответ: г) 3,64 ± 0,32. Задача С помощью случайной выборки требуется определить процент студентов, проживающих в общежитии с точностью до 3% и с вероятностью 0,683 (t=1). Сколько студентов необходимо обследовать для получения необходимого результата из общего числа студентов 800 человек. Решение. Для бесповторного отбора численность выборки (при определении доли альтернативного признака) находится по формуле:
По условию,
Так как
Ответ: б) 206 чел. Задача На экономическом факультете выборочным методом (отбор повторный) был определен средний возраст студента. Оказалось, что он равен 21,5 года при среднем квадратическом отклонении 4 года. Сколько надо обследовать студентов, чтобы ошибка при определении среднего возраста не превысила 1 год с вероятностью 0,997 (t=3). Решение.
Для повторного отбора численность выборки (при определении среднего размера ошибки признака) находится по формуле:
Ответ: а) 144 чел. Задача Выборочный хронометраж работы 2% рабочих, изготовляющих одинаковые детали, показал, что по затратам времени на изготовление одной детали рабочие распределились следующим образом:
Определите средние затраты времени на изготовление одной детали в выборке и определенную ошибку этой средней с вероятностью 0,997 (t=3). Решение. Определим выборочную среднюю:
то есть средние затраты времени на изготовление одной детали в выборке составляют 28 мин. По условию, вероятность Предельная ошибка выборки:
Средняя ошибка выборки для бесповторного отбора:
Определим выборочное среднее квадратическое отклонение:
Доверительный интервал:
Ответ: б) 28 мин Задача На 100 предприятиях, выборочно отобранных в порядке механического отбора, обследованы потери рабочего времени. Было установлено, что потери рабочего времени в среднем на 1 работающего составляют 120 часов, при среднем квадратическом отклонении равном 17,5 часа. Определить, с вероятностью 0,954 (t= 2), пределы средних потерь рабочего времени на 1 работающего в год по всем предприятиям. Решение. По условию,
Доверительный интервал:
Средняя ошибка выборки
Следовательно,
С вероятностью 0,954 можно утверждать, что средние потери рабочего времени на одного работающего в год по всем предприятиям, находятся в пределах от 116,5 до 123,5 часов. Ответ: в) в пределах от 116,5 до 123,5 час. Задача В результате выборочного обследования установили, что доля рабочих, выполняющих норму выработки на 110 и более процентов, составляет 40%, а предельная ошибка выборки равна 0,15. Определите, с вероятностью 0,683 (t = 1), в каких пределах находится доля рабочих, выполняющих норму выработки на 110 и более процентов, в генеральной совокупности. Решение. По условию,
Доверительный интервал:
Ответ: а) в пределах от 25 до 55%. Задача Абсолютная предельная ошибка выборки при определении среднего балла, полученного студентами на экзамене по Общей теории статистики, равна 0,15 балла, что составляет 4% к средней. Определить, с вероятностью 0 954 (t = 2), в каких пределах находится средний балл в генеральной совокупности. Решение. По условию,
Доверительный интервал:
Ответ: а) в пределах от 3,6 балла до 3,9 балла. Задача Удельный вес семей, имеющих 3 и более детей, по переписи населения Решение. По условию,
Из формулы находим
Следовательно, доля семей, имеющих 3 и более детей, в 1999 году составила 10,21%. Ответ: а) 10,21%. Задача Выпуск цемента на заводе планировали увеличить на 20%, план выполнен на 95%. Определите фактическое увеличение выпуска цемента по сравнению с прошлым годом. Решение. Используем формулу:
где
Найдем индекс динамики:
то есть фактическое увеличение выпуска цемента по сравнению с прошлым годом составило 14% (114 – 100). Ответ: г) увеличился на 14%. Задача Удельный вес оборотных средств, вложенных в запас сырья, составил на предприятии в 1999 г. 25%. Определить удельный вес оборотных средств, вложенных в запасы сырья в 1998 г.,если известно, что за этот период оборотные средства на предприятии увеличились на 140%, а оборотные средства, вложенные в запасы сырья — 1,9 раз. Решение. По условию,
Из формулы находим
Следовательно, удельный вес оборотных средств, вложенных в запасы сырья в 1998 году, составил 31,6%. Ответ: а) 31,6%. Задача Предусматривалось по плану увеличить ввод в строй жилья на 1,3%, фактически ввели на 0,8% больше, чем в предыдущем году. Определить относительную величину выполнения плана по вводу в строй жилья. Решение. Относительная величина выполнения плана
то есть план по вводу в строй жилья недовыполнен на 0,5% (99,5 – 100). Ответ: в) план недовыполнен на 0,5%. Задача Удельный вес безработных в общей численности трудоспособного населения области составил в 1994г. – 1%, а в 1999 г. - 6,7%. Определите численность безработных в 1999 г., если известно, что численность трудоспособного населения области уменьшилась за этот период в Решение. По условию,
Так как где
то
Итак, численность безработных в 1999 г. составила в среднем 1327 человек. Ответ: г) 1327 человек. Задача Планировалось снизить трудоемкость изготовления продукции «А» на 3,6%, фактически она была снижена на 5%. Определите выполнение плана по снижению трудоемкости. Решение. Относительная величина выполнения плана
то есть план по снижению трудоемкости перевыполнен на 1,4% (101,4 – 100). Ответ: г) план перевыполнили на 1,40%. Задача Динамика численности населения (тыс. чел.) города за 1993-1997 гг. может быть описана уравнением тренда у = 60 - 0,1t. Экстраполируя эту тенденцию развития, определите численность населения в 2000 г. Решение.
При
Предположив, что данный ряд динамики имеет постоянные абсолютные приросты
где
Здесь
Следовательно, численность населения в 2000 г. составит:
Ответ: 59,5 тыс. чел. (ни один из предложенных вариантов не подходит). Задача Имеются следующие данные о выпуске продукции фирмы за 2 смежных квартала:
Определить изменение объема реализации во 2 квартале по сравнению Решение. Факторная индексная модель:
Абсолютное изменение объема реализации во 2 квартале по сравнению с 1-ым (млн. руб.):
в том числе за счет: а) изменения общего объема выпущенной продукции:
б) изменения коэффициента товарности:
в) изменения доли реализованной продукции:
Проверка:
5,1 – 1,8 + 1,92 = 5,22 (млн. руб.). Ответ: г) а =+5,1, б =-1,8, в = +1,92. Задача Определить изменение чистой продукции в отчетном периоде по сравнению с базисным (в абсолютном выражении) за счет отдельных факторов, если известно, что в базисном году объем чистой продукции составлял 400 млн. руб., а в отчетном году вырос до 455; при увеличении фонда отработанного времени (а) на 8%, и росте производительности труда (б) в 1,2 раза, изменением доли чистой продукции в валовой продукте отрасли (в). Решение. По условию,
Факторная индексная модель:
то есть доля чистой продукции в валовом продукте отрасли сократилась в отчетном году по сравнению с базисным на 12,2%. Общий прирост объема чистой продукции в абсолютном выражении (млн. руб.):
в том числе: а) за счет увеличения фонда отработанного времени:
б) за счет роста производительности труда:
в) за счет сокращения доли чистой продукции в валовом продукте отрасли:
Проверка:
32 + 86 – 63 = 55 (млн. руб.). Ответ: б) а = +32; б = +86; в = -63. Задача Имеются следующие данные о работе авторемонтных мастерских за 2 года работы:
Определить прирост расходов на заработную плату за выполнение ремонтов (в абсолютном выражении) за счет: а) изменения количества выполненных ремонтов; б) изменения затрат рабочего времени на производство одного ремонта; в) изменения часовой заработной платы. Решение. Факторная индексная модель:
то есть изменение расходов на заработную плату зависит от изменения количества выполненных ремонтов (индекс
Общий прирост расходов на заработную плату за выполнение ремонтов в отчетном периоде по сравнению с базисным составил (тыс. руб.):
В том числе за счет: а) увеличения количества выполненных ремонтов: б) увеличения затрат рабочего времени на производство одного ремонта: в) повышения часовой заработной платы:
Проверка:
39,5 + 70 + 30 = 139,5 (тыс. руб.). Ответ: в) а = +39,5; б = +70,0, в = +30,0. Задача Развитие экономики области за 2 смежных года характеризуется следующими данными (млрд. руб.):
Определите абсолютный прирост доходов бюджета за счет а) изменения объема валового выпуска продуктов и услуг, б) изменения доля валового внутреннего продукта в валовом выпуске продуктов и услуг; в) изменения соотношения валового национального продукта и валового внутреннего продукта; г) изменения доли использованного национального дохода в валовом национальном продукте; д) изменения доли доходов областного бюджета в использованном национальном доходе. Решение. Факторная индексная модель:
Здесь
Общий прирост доходов бюджета составляет (млрд. руб.):
в том числе: а) за счет изменения объема валового выпуска продуктов и услуг:
б) за счет изменения доли валового внутреннего продукта в валовом выпуске продуктов и услуг:
в) за счет изменения соотношения валового национального продукта и валового внутреннего продукта:
г) за счет изменения доли использованного национального дохода в валовом национальном продукте: д) за счет изменения доли доходов областного бюджета в использованном национальном доходе:
Проверка: 3,15 – 1,35 + 0,67 + 2,93 + 0 = 5,4 (млрд. руб.). Ответ: г) а = +3,15; б = -1,35; в = +0,67; г = +2,93; д = 0. Задача Среднечасовая выработка (а) увеличилась в отчетном периоде по сравнению с базисным на 16%, средняя фактическая продолжительность рабочего дня (б) сократилась на 2%, число дней отработанных одним рабочим в году (в) увеличилось на 1%, а число рабочих сократилось на 10%. Определить, как изменился объем произведенной продукции (в млн. руб.) в результате действия каждого из этих факторов в отдельности, если известно, что в отчетном периоде произвели продукции на 100 млн. руб. Решение. По условию,
Факторная индексная модель:
Так как Абсолютный прирост объема продукции в целом (млн. руб.):
в том числе: - за счет сокращения числа рабочих:
- за счет сокращения средней фактической продолжительности рабочего дня:
- за счет увеличения числа дней, отработанных одним рабочим в году:
- за счет роста среднечасовой выработки:
Проверка:
-10 – 2 + 1 + 14 = 3 (млн. руб.). Ответ: в) а = +14; б = -2; в = +1; г = -10. Задача За 2 года производительность общественного труда (а) повысилась на 8%, доля материальных затрат (б) в валовом внутреннем продукте были а базисном периоде 52%, а в отчетном 49%. Фонд отработанного времени (в) за эти годы увеличился в 1,02 раза. Валовой национальный продукт составил в отчетном периоде 200 млн. руб. Определить прирост ВНП Решение. По условию,
Факторная индексная модель:
где
Так как то Общий прирост ВНП в отчетном периоде по сравнению с базисным составил (млн. руб.):
в том числе: а) за счет увеличения фонда отработанного времени:
б) за счет роста производительности общественного труда:
в) за счет увеличения доли чистой продукции в ВВП:
Проверка:
3 + 14 + 12 = 29 (млн. руб.). Ответ: а) а = +3; б = +14; в = +12. Задача Определить объем продукции (в абсолютном выражении), дополнительно полученной в отчетном периоде за счет а) изменения объема основных производственных фондов, б) повышения доли оборудования в составе основных производственных фондов; в) лучшего использования оборудования (фондоотдачи), если известно, что продукция предприятия увеличилась с 54 млн. руб. в базисном периоде до 61 млн. руб. в отчетном периоде, при увеличении стоимости всех основных производственных фондов на 6% и повышении доли оборудования в стоимости всех фондов на 10%. Решение. По условию,
Известно, что изменение объема продукции происходит вследствие изменения величины основных фондов и фондоотдачи:
где Так как Факторная индексная модель:
Общий прирост объема продукции в абсолютном выражении:
Этот прирост состоит из трех частей (млн. руб.): а) прирост за счет изменения объема основных производственных фондов:
б) прирост за счет повышения доли оборудования в составе основных производственных фондов:
в) прирост за счет лучшего использования оборудования (фондоотдачи):
Определим индекс фондоотдачи:
Проверка:
3 + 6 – 2 = 7 (млн. руб.). Ответ: г) а = +3; б = +6; в = - 2. Задача Имеются следующие данные о производстве товарной продукции предприятия:
Определить в какой мере (в абсолютном выражении) изменение затрат на всю продукцию в отчетном периоде по сравнению с базисным связано с: а) ростом физического объема производства, б) изменением учетных цен 1 продукции, в) изменением уровня затрат на 1 рубль продукции. Решение. Изменение суммы затрат на всю продукцию зависит от изменения количества выпущенной продукции (индекс Факторная индексная модель:
Изменение суммы затрат на всю продукцию в отчетном периоде по сравнению с базисным произошло за счет (руб.): а) роста физического объема производства: б) изменения учетных цен единицы продукции: в) изменения уровня затрат на 1 рубль продукции: Общий прирост суммы затрат на всю продукцию составил:
Ответ: б) а = +575, б = +655; в = +380. Задача Имеются следующие данные о затратах на сырье для производства 2-х видов продукции:
Определить в какой мере (в абсолютном выражении) изменение затрат на сырье в отчетном периоде по сравнению с базисным связано с: а) ростом объема производства; б) изменением удельного расхода сырья; в) изменением цен на сырье. Решение. Изменение суммы затрат на сырье зависит от изменения количества выпущенной продукции (индекс Факторная индексная модель:
Изменение затрат на сырье в отчетном периоде по сравнению с базисным произошло за счет (руб.): а) роста объема производства: б) изменения удельного расхода сырья: в) изменения цен на сырье: Общий прирост суммы затрат на сырье составил:
Ответ: а) а = +11; б = -4; в = +48. Задача Определены параметры уравнения регрессии, характеризующего связь между числом сотрудников коммерческих банков и прибылью, получаемую этими банками (тыс. руб.) Это означает: а) при увеличении численности сотрудников на одного человека прибыль коммерческого банка в среднем увеличивается на 160,6 тыс. руб.; б) при увеличении численности сотрудников на одного человека прибыль коммерческого банка в среднем увеличивается на 1,3 тыс. руб.; в) при увеличении численности сотрудников на 1 человека прибыль коммерческого банка увеличивается в среднем на 1,3%: г) при увеличении численности сотрудников на одного человека прибыль коммерческого банка увеличивается в среднем на 155,3 тыс. руб. Решение. Здесь x – численность сотрудников, y – прибыль коммерческого банка. Коэффициент линейной регрессии, равный 1,3, означает, что при увеличении численности сотрудников на одного человека прибыль коммерческого банка увеличивается в среднем на 1,3 тыс. руб. Ответ: б). Задача Определите величину корреляционного отношения, характеризующего зависимость между производительностью труда рабочих станочников и стажем их работы, если известны следующие данные:
|