Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формулы сокращенного умножения. Бином Ньютона.


Формулы сокращенного умножения. Бином Ньютона.

 

Выражения, составленные из чисел и переменных, связанных действиями сложения, вычитания, умножения, деления, возведения в степень с рациональным показателем, называются алгебраическими выражениями.

При выполнении преобразований алгебраических выражений используются формулы сокращенного умножения:

– квадрат суммы;

– квадрат разности;

– разность квадратов;

– куб суммы;

– куб разности;

– сумма кубов;

– разность кубов.

Формулы квадрата и куба суммы являются частными случаями формулы бинома Ньютона, которая служит для возведения в натуральную степень суммы двух слагаемых:

где биномиальные коэффициенты.

Формула бинома Ньютона обладает следующими свойствами:

1) в разложении двучлена по формуле Ньютона содержится n+1 член;

2) сумма показателей степеней a и b в каждом члене равна n;

3) биномиальные коэффициенты членов, равноудаленных от концов разложения, равны между собой;

4) сумма биномиальных коэффициентов разложения равна ;

Биномиальные коэффициенты можно вычислять, используя схему, которая называется треугольником Паскаля.

Здесь каждое число, кроме крайних единиц, является суммой двух вышерасположенных.

Найти (к+1) – й член разложения можно по формуле: .

----------------------------------------------------------------------------------------------------------------

Бином Ньютона. Стр 1.

Пример 1. Разложить выражение по формуле бинома Ньютона.

Решение. Разложение будет иметь вид:

Пример 2. Сумма биномиальных коэффициентов разложения равна 64. Определить слагаемое, не содержащее x.

Решение. По свойству 4) бинома Ньютона

Т.к n=3m, то m=2. Следовательно имеем разложение .

Слагаемое не содержит х в том случае, если степень х равна нулю. Воспользуемся формулой (к+1) – го члена разложения:

Составим уравнение для определения номера члена разложения: 6 – 3k = 0 k = 2.

Значит, .




<== предыдущая лекция | следующая лекция ==>
ОБРАЗОВАНИЕ В РОССИИ И ЗА РУБЕЖОМ | Стриптиз в химической лаборатории.

Дата добавления: 2015-09-18; просмотров: 924. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия