Элементарных частиц
В ядерных фотоэмульсиях (конец 40-х годов) и на ускорителях заряженных частиц (50-е годы) обнаружены тяжелые нестабильные элементарные частицы массой, большей массы нуклона, названные гиперонами (от греч. hyper — сверх, выше). Известно несколько типов гиперонов: лямбда (L0), сигма (S°, S+, S-), кси (X+, X-) и омега (W-). Существование W--гиперона следовало из предложенной (1961) М. Гелл-Манном (р. 1929) (американский физик; Нобелевская премия 1969 г.) схемы для классификации сильно взаимодействующих элементарных частиц. Все известные в то время частицы укладывались в эту схему, но в ней оставалось одно незаполненное место, которое должна была занять отрицательно заряженная частица массой, равной примерно 3284mе. В результате специально поставленного эксперимента был действительно обнаружен W--гиперон массой 3273me. Гипероны имеют массы в пределах (2183—3273)me, их спин равен 1/2 (только спин W--гиперона равен 3/2), время жизни приблизительно 10-10 с (для S°-гиперона время жизни равно приблизительно 10-20 с). Они участвуют в сильных взаимодействиях, т. е. принадлежат к группе адронов. Гипероны распадаются на нуклоны и легкие частицы (p-мезоны, электроны, нейтрино и γ-кванты). Детальное исследование рождения и превращения гиперонов привело к установлению новой квантовой характеристики элементарных частиц — так называемой странности. Ее введение оказалось необходимым для объяснения ряда парадоксальных (с точки зрения существовавших представлений) свойств этих частиц. Дело в том, что гипероны должны были, как представлялось, обладать временем жизни примерно 10-23 с, что в 1013 раз (!) меньше установленного на опыте. Подобные времена жизни можно объяснить лишь тем, что распад гиперонов происходит в результате слабого взаимодействия. Кроме того, оказалось, что всякий раз гиперон рождается в паре с K-мезоном. Например, в реакции (274.1) с L0-гипероном всегда рождается K°-мезон, в поведении которого обнаруживаются те же особенности, что и у гиперона. Распад же L0-гиперона происходит по схеме (274.2) Особенности поведения гиперонов и K-мезонов были объяснены в 1955 г. М. Гелл-Манном с помощью квантового числа — странности S, которая сохраняется в процессах сильного и электромагнитного взаимодействий. Если приписать каонам S = 1, а L°- и S-гиперонам S = - 1и считать, что у нуклонов и p-мезонов S = 0, то сохранение суммарной странности частиц в сильном взаимодействии объясняет как совместное рождение L°-гиперона с K0-мезоном, так и невозможность распада частиц с не равной нулю странностью за счет сильного взаимодействия на частицы, странность которых равна нулю. Реакция (274.2) идет с нарушением странности, поэтому она не может происходить в результате сильного взаимодействия. X-Гиперонам, которые рождаются совместно с двумя каонами, приписывают S = - 2; W-гиперонам — S = - 3. Из закона сохранения странности следовало существование частиц, таких, как K°-мезон, S0-, X0 -гипероны, которые впоследствии были обнаружены экспериментально. Каждый гиперон имеет свою античастицу. Элементарным частицам приписывают еще одну квантово-механическую величи ну — челюсть Р— квантовое число, характеризующее симметрию волновой функции элементарной частицы (или системы элементарных частиц) относительно зеркального отражения. Если при зеркальном отражении волновая функция частицы не меняет знака, то четность частицы Р = +1 (четность положительная), если меняет знак, то четность частицы Р = —1 (отрицательная). Из квантовой механики вытекает закон сохранения четности, согласно которому при всех превращениях, претерпеваемых системой частиц, четность состояния не изменяется. Сохранение четности связано со свойством зеркальной симметрии пространства и указывает на инвариантность законов природы по отношению к замене правого левым, и наоборот. Однако исследования распадов K-мезоиов привели американских физиков Т. Ли и Ч. Янга (1956 г.; Нобелевская премия 1957 г.) к выводу о том, что в слабых взаимодействиях закон сохранения четности может нарушаться. Целый ряд опытов подтвердили это предсказание. Таким образом, закон сохранения четности, как и закон сохранения странности, выполняется только при сильных и электромагнитных взаимодействиях.
|