Селекция микроорганизмов. Биотехнология
Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и всех других организмов (1 мутация на 1 млн. особей по каждому гену), но очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену. В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое. Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны. Биотехнология — использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах. Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия. Генная инженерия основана на выделении нужного гена из генома одного организма и введении его в геном другого организма. «Вырезании» генов проводят с помощью специальных «генетических ножниц», ферментов — рестриктаз, затем ген вшивают в вектор — плазмиду, с помощью которого ген вводится в бактерию (рис. 342). Вшивание осуществляется с помощью другой группы ферментов — лигаз. Причем вектор должен содержать все необходимое для управления работой этого гена — промотор, терминатор, ген-оператор и ген-регулятор. Кроме того, вектор должен содержать маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Затем вектор вводится в бактерию, и на последнем этапе отбираются те бактерии, в которых введенные гены успешно работают. Излюбленный объект генных инженеров — кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста — соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.
Второй путь — синтез гена искусственным путем. Для этого используются иРНК, с помощью фермента обратная транскриптаза на иРНК синтезируется ДНК. Методы хромосомной инженерии. © Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков, или замещении одной пары гомологичных хромосом на другую. На этом основаны методы получения замещенных и дополненных линий, с помощью которых в растениях собираются признаки, приближающие к созданию «идеального сорта». © Очень перспективен метод гаплоидов, основанный на выращивании гаплоидных растений с последующим удвоением хромосом. Например, выращивают из пыльцевых зерен кукурузы гаплоидные растения, содержащие 10 хромосом, затем хромосомы удваивают и получают диплоидные (10 пар хромосом), полностью гомозиготные растения всего за 2 — 3 года вместо 6 — 8 летнего инбридинга. © Сюда же можно отнести и получение полиплоидных растений в результате кратного увеличения хромосом. Методы клеточной инженерии связаны с культивированием отдельных клеток в питательных средах, где они образуют клеточные культуры. Оказалось, что клетки растений и животных, помещенных в питательную среду, содержащую все необходимые для жизнедеятельности вещества, способны делиться. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. 1. Это дает возможность с помощью клеточных культур получать ценные вещества. Например, культура клеток женьшеня нарабатывает биологически активные вещества. 2. С другой стороны, можно размножить эти растения в пробирках, помещая клетки в определенные питательные среды. Так можно размножать редкие и ценные растения. Это позволяет создавать безвирусные сорта картофеля и других растений. 3. Продолжается работа по гибридизации клеток. Например, разработана методика гибридизации протопластов соматических клеток. Удаляются клеточные оболочки и сливаются протопласты клеток организмов, относящихся к разным видам — картофеля и томата, яблони и вишни. Перспективно создание гибридом, при котором осуществляется гибридизация различных клеток. Например, лимфоциты, образующие антитела, гибридизируются с раковыми клетками. В результате гибридомы нарабатывают антитела, как лимфоциты, и «бессмертны», как раковые клетки. Следовательно, они обладают возможностью неограниченного размножения в культуре. 4. Интересен метод пересадки ядер соматических клеток в яйцеклетки. Таким способом возможно клонирование животных, получение генетических копий от одного организма. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих. 5. Возможно слияние эмбрионов на ранних стадиях, создание химерных животных. Таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.
|