Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции митохондрий





Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ. В клетках процессы окисления и выделения энергии, освобождающиеся в результате этого процесса, проходят в несколько взаимосвязанных этапов. При этом в качестве начальных субстратов используются различные углеводы, жирные кислоты, аминокислоты (рис.). Первые этапы окисления приводят кроме образования АТФ к появлению промежуточных продуктов, конечное окисление которых в митохондриях дает возможность клетке использовать этот процесс для синтеза основного количества АТФ.

Начальные этапы окисления углеводов происходят в гиалоплазме и не требуют участия кислорода. Поэтому они называются анаэробным окислением, или гликолизом. Главным субстратом окисления при анаэробном получении энергии служат гексозы и в первую очередь глюкоза; некоторые бактерии обладают свойством извлекать энергию, окисляяя пентозы, жирные кислоты или аминокислоты. В глюкозе количество потенциальной энергии, заключенной в связях между атомами С, Н и О, составляет около 680 ккал на 1 моль (т.е. на 180 г глюкозы); эта энергия освобождается при полном окислении глюкозы согласно следующей реакции:

С6Н12О6 + 6О2Þ 6Н2О + 6СО2 + 680 ккал

В живой клетке это огромное количество энергии не освобождается одновременно, как при горении в пламени. Освобождение энергии идет в виде ступенчатого процесса, управляемого целым рядом окислительных ферментов, и не связано с переходом энергии химической связи в тепло, как при горении, а с переходом ее в макроэнергетическую связь в молекуле АТФ, которая синтезируется при использовании освобождающейся энергии из АДФ и фосфата.

В процессе гликолиза происходит неполное окисление субстрата. В результате гликолиза глюкоза распадается до триоз, при этом тратятся 2 молекулы АТФ и синтезируются 4 молекулы АТФ. Так что в конечном результате клетка “зарабатывает” всего 2 молекулы АТФ. В энергетическом отношении этот процесс малоэффективен, поэтому из 680 ккал, заключающихся в связях 1 моля глюкозы, освобождается менее 10% энергии. Несмотря на низкий энергетический выход, анаэробное окисление, гликолиз, широко используется в живой природе. Он является основным поставляющим энергию процессом для многих микроорганизмов, некоторых кишечных паразитических анаэробных простейших, для клеток высших организмов на ранних стадиях эмбрионального развития, для многих опухолевых клеток, для клеток культуры ткани и др. Эритроциты млекопитающих, например, получают всю необходимую им энергию за счет гликолиза, так как у них нет митохондрий.

Образовавшиеся в результате гликолиза триозы, и в первую очередь пировиноградная кислота, вовлекаются в дальнейшее окисление, происходящее уже в самих митохондриях. При этом происходит использование энергии расщепления всех химических связей, что приводит к выделению СО2, к потреблению кислорода и синтезу большого количества АТФ. Эти процессы связаны с окислительным циклом трикарбоновых кислот и с дыхательной цепью переноса электронов, где происходит фосфорилирование АДФ и синтез клеточного “топлива”, молекул АТФ (рис. 209).

В цикле трикарбоновых кислот (цикл Кребса, или цикл лимонной кислоты) образовавшийся в результате гликолиза пируват сначала теряет молекулу СО2 и, окисляясь до ацетата (двууглеродное соединение), соединяется с коферментом А. Затем ацетилкоэнзим А, соединяясь с оксалацетатом (четырехуглеродное соединение), образует шестиуглеродный цитрат (лимоную кислоту). Затем происходит цикл окисления этого шестиуглеродного соединения до четырехуглеродного оксалацетата, снова связывание с ацетилкоэнзимом А, и затем цикл повторяется. При этом окислении выделяются две молекулы СО2, а электроны, освободившиеся при окислении, переносятся на акцепторные молекулы коферментов (NAD-никотинамидадениндинуклеотид), которые вовлекают их далее в цепь переноса электронов. Следовательно, в цикле трикарбоновых кислот нет самого синтеза АТФ, а идет окисление молекул, перенос электронов на акцепторы и выделение СО2. Все описанные выше события внутри митохондрий происходят в их матриксе.

Выделенные митохондрии обладают способностью осуществлять окисление пирувата до СО2 и способны к синтезу АТФ. Если взвесь митохондрий подвергнуть воздействию ультразвука, то после разрыва митохондриальных мембран компоненты матрикса освобождаются и переходят в среду выделения. После такого разрушения можно осадить мембраны митохондрий и анализировать их функциональные активности.

Было обнаружено, что во фракции, свободной от мембран, представляющей собой компоненты матрикса, обнаруживаются ферменты, участвующие в цикле трикарбоновых кислот. Следовательно, в матриксе локализованы ферменты этого цикла, которые находятся в свободном, не связанном состоянии с митохондриальными мембранами, за исключением сукцинатдегидрогеназы. Кроме того, в состав матрикса входят ферменты окисления жирных кислот; основной продукт окисления жирных кислот – ацетилкоэнзим Α – тоже в матриксе поступает в цикл трикарбоновых кислот, в котором он подвергается дальнейшему окислению до СО2 и Н2О В матриксе митохондрий происходит также окисление некоторых аминокислот, поступающих в цикл трикарбоновых кислот.

Остальные события, связанные с дальнейшим переносом электронов и синтезом АТФ связаны с внутренней митохондриальной мембраной, с кристами митохондрий.

Освободившиеся в процессе окисления в цикле трикарбоновых кислот электроны, акцептированные на коферментах, переносятся затем в дыхательную цепь (цепь переноса электронов), где они соединяются с молекулярным кислородом, образуя молекулы воды.

Дыхательная цепь представляет собой ряд белковых комплексов, встроенных во внутреннюю митохондриальную мембрану (рис. 210). Существуют три главных ферментных комплекса. Первый, NADH-дегидрогеназный комплекс принимает электроны от NADH и переносит их во второй комплекс, комплекс в-С1, который в свою очередь, переносит их на цитохромоксидазный комплекс, а он их передает на кислород, в результате чего образуется вода. На этом окисление заканчивается.

Как и полагается, окисление исходного субстрата привело к выделению СО2 и воды, но при этом не выделилась тепловая энергия, как при горении, а образовались молекулы АТФ. Они были синтезированы другой группой белков, не связанных прямо с окислением. Было найдено, что во внутренних митохондриальных мембранах на поверхности мембран, смотрящих в матрикс, располагаются крупные белковые комплексы, ферменты, АТФ-синтетазы. В электронном микроскопе во фракции внутренних митохондриальных частиц видны так называемые “грибовидные” тельца сплошь выстилающие поверхность мембран, смотрящую в матрикс. Эти тельца имеют как бы ножку и головку. Диаметром 8-9 нм. Было обнаружено, что эти тельца представляют собой белковый комплекс, состоящий из 9 субъединиц – АТФ-синтетазу. Следовательно, во внутренних мембранах митохондрий локализованы ферменты как окислительной цепи, так и ферменты синтеза АТФ (рис. 201б).

Дыхательная цепь – это главная система превращения энергии в митохондриях. Здесь происходит последовательное окисление и восстановление элементов дыхательной цепи, в результате чего высвобождается небольшими порциями энергия. За счет этой энергии в трех точках цепи из АДФ и фосфата образуется АТФ. Поэтому говорят, что окисление (перенос электронов) сопряжено с фосфорилированием (АДФ + Фн →АТФ, т.е. происходит процесс окислительного фосфорилирования.

В результате многократной оборачиваемости субстратов в цикле Кребса происходит полное окисление поступивших продуктов первичного гликолитического окисления, и затем в цепи окислительного фосфорилирования происходит максимальное использование освободившейся при окислении энергии для синтеза АТФ.

Было высказано предположение, что выделяющаяся при транспорте электронов энергия запасается в виде градиента протонов на мембране. При этом на внешней поверхности внутренней мембраны митохондрий возникает повышенная концентрация положительно заряженных ионов водорода. Возникший при этом протонный градиент является движущей силой в синтезе АТФ (рис. 211).

Это предположение стало затем теорией, хемиосмотической теорией сопряжения окисления субстратов с синтезом АТФ. Как оказалось, при переносе электронов в митохондриальной мембране каждый комплекс дыхательной цепи направляет свободную энергию окисление на перемещение протонов (положительных зарядов) через мембрану, из матрикса в межмембранное пространство, что приводит к образованию разности потенциалов на мембране: положительные заряды преобладают в межмембранном пространстве, а отрицательные – со стороны матрикса митохондрий. При достижении определенной разности потенциалов (220 мВ) белковый комплекс АТФ-синтетазы начинает транспортировать протоны обратно в матрикс, при этом превращает одну форму энергии в другую: образует АТФ из АДФ и неорганического фосфата. Так происходит сопряжение окислительных процессов с синтетическим, с фосфорилированием АДФ. Пока происходит окисление субстратов, пока происходит перекачка протонов через внутреннюю митохондриальную мембрану – идет сопряженный с этим синтез АТФ, т.е. происходит окислительное фосфорилирование.

Эти два процесса могут быть разобщены. Можно снять разность потенциалов на митохондриальной мембране, или механически ее нарушить, или с помощью химических соединений (например, динитрофенола) сделать в ней диффузионные каналы. При этом будет продолжаться перенос электронов, будет продолжаться окисление субстрата, но синтеза АТФ уже происходить не будет. В этом случае энергия, освобождающаяся при окислении будет переходить в тепловую энергию.

 







Дата добавления: 2015-09-19; просмотров: 604. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия