Конфликт и его формальная модель
Принимающие участие в конфликте стороны элементы некоторого абстрактного множества. Часто оказывается целесообразным считать их подмножествами некоторого универсального множества; элементы последнего принято называть игроками, а подмножества игроков, которые являются действующими сторонами в конфликте, — коалициями действия (различные коалиции действия могут пересекаться и даже содержаться одна в другой). Множество всех коалиций действия в конфликте далее будет обозначаться через Âd. Каждая из коалиций действия К принимает некоторое решение из некоторого множества sk доступных для нее решений. Элементы множества sk называются стратегиями коалиции К. Выбор каждой из коалиций действия некоторой стратегии определяет то, что называется исходом конфликта. При этом не обязательно, чтобы этот исход понимался как однозначно определенное детерминированное явление. Допустимо, чтобы тот или иной из этих исходов был множеством физических явлений или же случайным явлением, т.е. множеством явлений с вероятностной мерой на нем. Кроме того, некоторые комбинации выбранных коалициями действия стратегий могут оказаться несовместимыми и потому неосуществимыми. В этом случае принято считать, что конфликт не состоялся. (В применении к играм (конфликты) это может выражаться в появлении некоторой помехи, прервавшей игру (конфликты) без возможности ее продолжения). Все исходы конфликта называются ситуациями. Из сказанного выше следует, что ситуации составляют некоторое множество S, являющееся подмножеством множества всех комбинаций стратегий коалиций действия, т.е. декартова произведения множеств стратегий. K Î Âd. По поводу заинтересованных в исходах конфликта сторон можно повторить почти все, сказанное в связи с коалициями действия. Их называют коалициями интересов, и они считаются элементами некоторого абстрактного множества, которое далее будет обозначаться через Â и . Коалиции интересов суть подмножества того же множества игроков, что и коалиции действия. В теории игр множества коалиций действия и множества коалиций интересов рассматриваются как различные. Легко видеть, что в реальных конфликтах могут встречаться коалиции действия, не являющиеся коалициями интересов, и наоборот. Рассмотрим, наконец, форму выражения заинтересованности для коалиций интересов. Эта заинтересованность проявляется в том, что каждая из этих коалиций предпочитает одни исходы конфликта другим. Это описывается в виде некоторого отношения предпочтения — абстрактного бинарного отношения ýк на множестве всех ситуаций. Тот факт, что коалиция интересов К предпочитает ситуацию х ситуации у, обозначается как х ýк у. Вообще говоря, никаких свойств у отношения ýк не предполагается, хотя обычно оно считается транзитивным (т.е. из х ýк у и у ýк Z следует х ýк Z). В частности, не требуется, чтобы отношение было линейным, т.е. чтобы любые две ситуации были сравнимы друг с другом (в формальной записи для любых двух различных ситуаций х и у либо х ýк у, либо у ýк х). Нередко отношение предпочтения задается следующим образом. На множестве ситуаций S определяется функция H к, принимающая вещественные значения и называемая функцией выигрыша коалиции интересов К. Ее значение Н к (х) понимается как выигрыш, который коалиция К получает в ситуации х. Естественно принять, что х ýк у, если Нк (х) > Нк (у). Итак, конфликтом (или игрой) называется система Г= <Âd. í Sк ý к ÎÂd, S, Â и, { ý к } к ÎÂ и > где перечисленные в ломаных скобках множества и отношения связаны друг с другом, как это было описано выше. Математическая теория игр занимается изучением конфликтов (игр) именно в этом понимании. Смешанная стратегия игрока есть вероятностное распределение на множестве его чистых стратегий.
|