Студопедия — Многие миры
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Многие миры






Поначалу понятие декогеренции кажется весьма удовлетворитель-
ным: теперь волновая функция коллапсирует не через сознание, а
через беспорядочное взаимодействие с внешним миром. Но это
все же не решает фундаментального вопроса, беспокоившего еще
Эйнштейна: как природа «выбирает», в какое состояние коллапси-
ровать? Когда молекула воздуха ударяет кота, кто или что определяет
финальное состояние кота? По этому вопросу теория декогеренции
просто утверждает, что две волновые функции разделяются и более
не взаимодействуют между собой, но она не отвечает на первона-
чальный вопрос: мертв кот или жив? Иными словами, декогеренция
делает присутствие сознания ненужным в квантовой механике, но
она не решает вопрос, беспокоивший Эйнштейна: каким образом
природа «выбирает» финальное состояние кота? В ответ на этот во-
прос теория декогеренции просто хранит молчание.

Однако существует естественное расширение декогеренции,
которое разрешает данный вопрос; сегодня оно приобретает все
более широкое признание среди физиков. Этот подход был пред-
ложен еще одним учеником Уилера, Хью Эвереттом III, который
оговорил возможность того, что кот может быть одновременно и
жив, и мертв в двух различных вселенных. Когда в 1957 году Эверетт
закончил свою диссертацию, ее едва заметили. Однако с течением
времени интерес к теории «многих миров» начал расти. Сегодня
эта теория вызвала прилив обновленного интереса к парадоксам
квантовой теории.

Согласно этой совершенно новой интерпретации, кот одновре-
менно и жив, и мертв по той причине, что Вселенная распалась на
две. В одной вселенной кот мертв; в другой он жив. В сущности, в
каждый момент времени вселенная расщепляется надвое, становясь
звеном в бесконечной череде расщепляющихся вселенных. Согласно
этому сценарию, все вселенные возможны, каждая из них так же


реальна, как и любая другая. Люди, живущие в каждой вселенной,
могут яростно утверждать, что именно их вселенная реальна, а все
остальные лишь воображаемые или ненастоящие. Эти параллельные
вселенные — не эфемерно существующие призрачные миры; в каж-
дой вселенной мы видим столь же реальные и объективные твердые
предметы и столь же реальные и объективные конкретные события,
как и в любой другой.

Преимуществом этой интерпретации является тот факт, что мы
можем опустить условие номер три — коллапс волновой функции.
Волновые функции никогда не коллапсируют, они продолжают раз-
виваться, вечно распадаясь на новые и новые волновые функции в
бесконечном древе распада, каждая ветвь которого представляет це-
лую вселенную. Большим преимуществом теории многих миров яв-
ляется то, что она проще, чем Копенгагенская интерпретация: здесь
не нужен коллапс волновой функции. Но цена, которую мы платим
за это, та, что теперь у нас есть вселенные, все время распадающиеся
на миллионы ветвей. (Некоторым сложно понять, каким образом
вести учет всех этих множащихся вселенных. Однако волновое урав-
нение Шрёдингера решает это автоматически. Отслеживая развитие
волнового уравнения, мы сразу находим все многочисленные ветви
волны.)

Если эта интерпретация верна, то в этот самый момент ваше тело
сосуществует с волновыми функциями динозавров, сцепившихся в
смертельной схватке. Вместе с вами в комнате сосуществует волно-
вая функция того мира, в котором немцы выиграли Вторую миро-
вую войну, в котором бродят инопланетные пришельцы, в котором
вы никогда так и не родились. Среди вселенных, существующих в
вашей гостиной, находятся и миры «Человека в высоком замке» и
«Сумеречной зоны». Загвоздка в том, что мы не можем с ними боль-
ше взаимодействовать, поскольку они от нас декогерировали.

Как сказал Алан Гут, «существует вселенная, где Элвис все еще
жив». Физик Франц Вильчек написал: «Нас преследует сознание
того, что бесконечное количество чуть-чуть отличающихся от нас
копий нас самих живет своими параллельными жизнями, а также
того, что в каждый момент еще больше двойников начинают свое су-
ществование, занимая место в одном из наших возможных вариантов
будущего». Он замечает, что история греческой цивилизации, а отсю-


да и всего западного мира, могла быть иной, если бы Елена Троянская
была не такой пленительной красавицей, а имела уродливую боро- давку на носу. «Что же, бородавки могут возникнуть как результат
мутаций в отдельных клетках, часто вызванных пребыванием под
лучами солнца, несущими ультрафиолет». Он продолжает: «Вывод;
существует много, много миров, в которых у Елены Троянской была
бородавка на кончике носа».

Мне вспоминается отрывок из классического научно-фанта-
стического произведения Олафа Стэплдона «Создатель звезд»:
«Каждый раз, когда существо встречалось с несколькими воз-
можными путями действия, оно избирало их все, таким образом
создавая много... самостоятельных историй космоса. Ибо в каждом
процессе эволюционного развития в космическом пространстве
существовало много созданий, и каждое из них постоянно сталки-
валось с выбором из многих возможных путей, и комбинации всех
этих путей были бесчисленны, представляя собой бесконечность
отдельных вселенных, отслаивающихся в каждый момент каждого
отрезка времени».

Голова идет кругом, когда мы понимаем, что, согласно этой интер-:
претации квантовой механики, все возможные миры сосуществуют
вместе с нами. Хотя для того, чтобы достичь иных миров, может пона-
добиться портал-червоточина, эти квантовые реальности существу-
ют в той самой комнате, где мы живем. Они сосуществуют с нами,
куда бы мы ни пошли. Ключевой вопрос вот в чем: если это правда,
то почему мы не видим эти иные вселенные, наполняющие нашу
гостиную? А вот здесь вступает в дело декогеренция: наша волновая
функция декогерировала с этими иными мирами (то есть эти волны
больше не находятся в фазе друг с другом). У нас больше нет контакта
с ними. Это означает, что даже малейшее взаимодействие с окружаю-
щей средой исключит взаимодействие различных волновых функций
друг с другом. (В главе 11 я привожу возможное исключение из этого
правила, с помощью которого разумным существам может удаться
путешествие между квантовыми реальностями.)

Не кажется ли это слишком странным, чтобы быть возможным?
Нобелевский лауреат Стивен Вайнберг проводит параллель между
этой теорией многих вселенных с радио. Вокруг вас сотни различных


радиоволн, передаваемых далекими станциями. В любой заданный
момент ваш офис, машина или гостиная заполняется этими радио-
волнами. Однако если вы включите приемник, то сможете слушать
радиоволны только на одной частоте в данный момент; остальные
частоты декогерировали и больше не находятся в фазе друг с другом.
Каждая станция обладает различной энергией, различной частотой.
В результате ваш приемник в данный момент времени может прини-
мать вещание только на одной частоте.

Подобным образом в нашей вселенной и мы «настроены» на
частоту, которая соответствует физической реальности. Но есть
бесконечное количество параллельных реальностей, сосуществую-
щих в одной комнате вместе с нами, хотя мы не можем «настроить-
ся на них». Эти миры очень похожи друг на друга, но в каждом из
них атомы обладают различной энергией. А поскольку каждый мир
состоит из триллионов и триллионов атомов, это означает, что раз-
личие в энергии может быть довольно велико. Поскольку частота
этих волн пропорциональна их энергии (по закону Планка), то это
означает, что волны каждого мира вибрируют с различной часто-
той и больше не могут взаимодействовать. Фактически волны этих
различных миров не взаимодействуют друг с другом и не влияют
друг на друга.

Что удивительно, принимая эту странную точку зрения, ученые
могут прийти ктем же результатам, что и с помощью Копенгагенского
подхода, без всякой нужды в коллапсе волновой функции. Иными
словами, эксперименты, проведенные как в соответствии с Копен-
гагенской интерпретацией, так и в соответствии с интерпретацией
теории многих миров, принесут в точности совпадающие результа-
ты. Коллапс волновой функции Бора в математическом отношении
эквивалентен действию окружающей среды. Иными словами, кот
Шрёдингера может быть мертв или жив одновременно, если мы
каким-либо образом изолируем кота от возможного воздействия
каждого атома или космического луча. Конечно, на практике это
неосуществимо. Как только кот вступит в контакт с космическим
лучом, волновая функция живого кота и волновая функция мертвого
кота декогерируются и будет казаться, что волновая функция коллап-
сировала.








Дата добавления: 2015-08-12; просмотров: 381. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия