Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Устойчивость оптимального решения.





Рассмотрим теперь понятие устойчивости оптимального решения.

В первом примере (см. рис 2.2.1.) оптимальное решение находится в точке С, которая является пересечением двух прямых, заданных уравнениями

2 х 1 + 1 х 2 = 12, (I)

2 х 1 + 3 х 2 = 18. (II)

Целевая функция F =5 х 1 + 6 х 2 (здесь c 1=5, c 2=6) максимальное значение приняла в точке С. После составления плана и его реализации в конкретной производственной программе c 1 и c 2 (удельная прибыль или затраты) могут изменяться. Зададимся следующим вопросом:

при каком соотношении коэффициентов целевой функции c 1 и c 2 оптимальное решение сохранится (устоит) в точке С?

Из курса высшей математики (раздел аналитической геометрии) нам известно, что коэффициенты, стоящие перед переменными х 1 и х 2 в уравнении прямой суть координаты вектора, перпендикулярного данной прямой (т.н. нормаль). На рис.2.2.1 нормаль к целевой функции обозначена n, нормаль к ограничению (I) n 1 и нормаль к ограничению (II) n 2.

Чтобы оптимальное решение сохранялось в точке С при изменяющихся коэффициентах c 1 и c 2 необходимо, чтобы вектор нормали n лежал между векторами n 1 и n 2. Для этого необходимо, чтобы тангенс угла между вектором n и осью х 1 (обозначим через tg(n, х 1)) был больше tg(n 1, х 1), но меньше tg(n 2, х 1). Таким образом, для обеспечения устойчивости оптимального решения в точке С необходимо выполнение условия:

tg(n 1, х 1) £ tg(n, х 1) £ tg(n 2, х 1).

Так как tg(n, х 1) = с 2/ с 1,

tg(n 1, х 1) = а12 /а11 =1/2,

tg(n 2, х 1) = а22 /а21 =3/2,

окончательно получаем для примера 2.2.1 соотношение устойчивости оптимального решения в виде:

1/2 £ с 2/ с 1 £ 3/2.

В случае n переменных получаем много соотношений аналогичного вида между всеми с k и с j (k¹j) показывающих, при каких условиях изменение коэффициентов целевой функции не повлечет изменение оптимального решения.

Подставляя вместо c 1 и c 2 их значения получим проверочные соотношения

1/2 £ 6 /5 £ 3/2.

Для второй задачи соотношение устойчивости оптимального решения будет иметь вид:

2/10 £ с 2/ с 1 £ 1/0.5,

а проверочное соотношение

2/10 £ 2.5 /1.5 £ 1/0.5.







Дата добавления: 2015-06-29; просмотров: 453. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия