Студопедия — Применение коммутационных устройств
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение коммутационных устройств






Коммутационное устройство — прибор, предназначенный для включения или отключения тока в одной или нескольких электрических цепях. Коммутационное устройство может выполнять одну или обе операции. Виды и классификация коммутационных устройств. Механическое коммутационное устройство — коммутационное устройство, предназначенное для замыкания и размыкания одной или нескольких цепей с помощью размыкаемых контактов.

Любое механическое коммутационное устройство можно характеризовать в зависимости от среды, в которой размыкаются и замыкаются его контакты, например воздушной, SFG, масляной. полупроводниковое коммутационное устройство — коммутационное устройство, созданное для включения и/или отключения тока в электрической цепи в результате воздействия на регулируемую проводимость полупроводника. Полупроводниковый коммутационный прибор рассчитан также на отключение тока. Плавкий предохранитель — коммутационный аппарат, размыкающий цепь (посредством плавления одного или нескольких своих специально спроектированных и калиброванных элементов), в которую он включен, и отключает ток, когда он превышает заданное значение в течение достаточного времени.

Автоматический выключатель — контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение установленного нормированного времени и отключать токи при указанных ненормальных условиях в цепи, таких как короткое замыкание. Контактор (контактный) — контактный коммутационный аппарат с единственным положением покоя, с управлением не вручную, способный включать, проводить и отключать токи при нормальных условиях цепи, включая перегрузку. Термин «с управлением не вручную» означает, что для управления прибором и его работы требуется одно или несколько внешних усилий. Контактор обычно предназначен для частой работы.

Электромагнитный контактор — контактор, в котором сила для замыкания контактов обеспечивается электромагнитом. Запираемый контактор — контактор, в котором запирающее приспособление не позволяет подвижным элементам вернуться в положение покоя, когда прекращается воздействие на механизм. Запор защелки и его расцепитель могут быть механическим, электромагнитным, пневматическим и т.д. Благодаря запору, запираемый контактор фактически приобретает второе положение покоя и в соответствии с определением контактора, в строгом смысле слова, он не является контактором. Однако поскольку по области применения и конструкции запираемый контактор ближе к контакторам вообще, чем к любым другим коммутационным аппаратам, считают необходимым его соответствие, когда уместно, требованиям к контакторам. Полупроводниковый контактор — аппарат, который выполняет функции контактора за счет использования полупроводникового коммутационного аппарата.

Полупроводниковый контактор может также включать в себя контактные коммутационные аппараты. Контрольное коммутационное устройство — автоматически управляемое коммутационное устройство, начинающее работать при определенных условиях, выраженных в количественном значении (давление, температура, скорость, уровень жидкости и т.д.). Нажимная кнопка — аппарат управления, имеющий орган управления, предназначенный для оперирования усилием, создаваемым частью человеческого тела, обычно ладонью или пальцем руки, и имеющий устройство возврата накопленной энергии (пружину). Аппарат защиты от короткого замыкания (АЗКЗ) — аппарат, предназначенный для защиты цепи или участка цепи от токов короткого замыкания посредством их отключения.

Разрядник для защиты от перенапряжений — устройство, предназначенное для защиты электрооборудования от высоких переходных перенапряжений и ограничения длительности, а часто и амплитуды последующего тока. Управляющее воздействие может осуществляться непосредственно оператором (нажатие кнопки, переключение тумблера и т. д.) — ручное управление. Устройства коммутации с таким управлением находятся на панелях аппаратуры. Управляющее воздействие может производиться электрическим управляющим сигналом. Устройства коммутации с таким управлением используются тогда, когда пульт управления отделен от аппаратуры, в которой должна осуществляться коммутация, и связан с нею электрически с помощью соединительных линий.

При этом первичное управляющее воздействие — это непосредственные действия оператора, которые преобразуются управляющий электрический сигнал, поступающий затем по проводам к исполнительным элементам. Не меньшее значение имеют такие коммутационные устройства, в которых управляющим воздействием является электрический сигнал при автоматическом управлении аппаратурой. При этом управляющие сигналы вырабатываются в аппаратуре без участия оператора. В коммутационных устройствах большое значение имеют исполнительные элементы, которые бывают контактные и бесконтактные.

Соответственно различают контактные и бесконтактные коммутационные устройства. В контактных используется электрический контакт – соприкосновение тел (контакт деталей) обеспечивающее непрерывность цепи. В таких коммутационных устройствах (реле, кнопки и т. д.) обычно применяют стыковой контакт, при котором контакт детали прижимаются друг к другу.

Существуют также врубные и вставные контакты, когда контакт детали перед рабочим состоянием осуществляют боковое или продольное движение в прижатом состоянии с преодолением сил трения (переключатели ручного управления, соединители). Разнообразие требований, которые предъявляются к коммутационным устройствам, привело к созданию большого числа их разновидностей, различающихся по функциональному назначению, принципу действия, конструкции, параметрам, техническим возможностям и областям применения.

Основные требования сводятся к снижению затрат энергии (мощности) на управление, улучшению качества коммутации и, соединений, улучшению конструктивно-технологической совместимости с ИС, повышению надежности, быстродействия (для коммутационных устройств) и уменьшению усилий сочленения и расчленения (для соединителей).

Основным параметром контактных и бесконтактных коммутационных устройств как ручного, так и дистанционного и автоматического управления является сопротивление в состоянии контакта, или в замкнутом состоянии (при электрическом контакте) или в открытом состоянии (при использовании бесконтактных коммутационных устройств), а также сопротивление в разомкнутом состоянии. Характерной особенностью коммутационных устройств является многократное переключение (105 … 108 раз) в процессе функционирования аппаратуры, т. е. при наличии токов и напряжений, что предъявляет высокие требования к износоустойчивости.

При многократном замыкании и размыкании в электрических контактах происходит изменение состояния контактирующих поверхностей контакт деталей и их разрушение. Срок службы коммутационных устройств равен примерно 15–25 лет. Основные требования предъявляются к контактному сопротивлению и его стабильности, контактному нажатию и усилию сочленения (расчленения), максимальным и минимальным токам и напряжениям, паразитным емкостям и сопротивлению изоляции между контактами разных пар. Важными являются также требования по надежности, технологичности, массе и габаритам.

Требования к электрическим и конструкторским параметрам коммутационных устройств разнообразны и часто противоречивы, в связи с чем выпускается много их разновидностей. Обычно коммутационные устройства являются нормализованными и стандартизованными. Это требует от конструктора умения ориентироваться в их многообразии, которое, с одной стороны, дает много возможностей, но с другой стороны, усложняют выбор оптимального варианта устройства для конкретной ЭА.

Иногда приходится разрабатывать специальные коммутационные устройства и соединители частного применения. При выборе вида коммутационных устройств конструктору следует иметь в виду их основные особенности, преимущества и недостатки. Широко распространенные коммутационные устройства имеют ряд принципиальных ограничений и недостатков.

Основные недостатки связаны с тем, что контакт в них достигается путем механического соединения контакт деталей, на которые оказывает влияние много факторов, а также с тем, что в конструкцию таких устройств входит большое число мелких деталей, выполняющих чисто механические функции. При этом возникают трудности при миниатюризации: при соблюдении тех же относительных отклонений в размерах требуются более высокие классы точности механической обработки. Непосредственное изготовление деталей, входящих в эти устройства, может быть автоматизировано, но сборка, формирование устройств в целом сложно поддаются автоматизации и обычно выполняются вручную.

Для обеспечения надежного электрического контакта между металлическими деталями необходимо выдерживать жесткие требования к интервалу значений контактных нажатий. Не менее важно качество обработки соединяемых поверхностей и выбор материала, из которого изготовлены контакт детали.

В связи с этим длительное время велись поиски новых устройств, которые должны выполнять функции коммутации и соединителей в ЭА. Эти поиски привели к созданию нового вида бесконтактных устройств, основанных на принципах оптоэлектроники, когда вместо механических элементов, осуществляющих коммутацию и соединение, используется световой поток и элементы, чувствительные к его наличию и интенсивности. Коммутационные устройства на основе оптопар не содержат механически изготавливаемых деталей сложной формы и не требуют механической многоэтапной сборки, но им также свойственны определенные ограничения: сопротивление в открытом состоянии у них существенно больше, чем у контактных устройств.

В настоящее время получили также распространение новые бесконтактные коммутационные устройства на МДП и биполярных транзисторах. В МДП-транзисторах коммутируемая цепь подсоединяется к стоку и истоку, а напряжение, управляющее коммутацией, — к затвору. Такие коммутационные устройства обладают следующими преимуществами: могут быть использованы для коммутации постоянного и переменного тока, чрезвычайно компактны (до 1000 коммутационных элементов на 1 мм2 в БИС-памяти), изготовление их основано на использовании технологических процессов микроэлектроники и групповой технологии.

В качестве недостатка можно отметить значительно большее, чем у контактных устройств, сопротивление в открытом состоянии. Такая коммутация цепей нашла широкое применение в телефонных коммутаторах и при коммутации элементов памяти в БИС. Основные достоинства: практически полная электрическая (гальваническая) развязка между входом и выходом; малая проходная емкость; однонаправленность распространения сигналов; широкая полоса пропускания по частоте, возможность коммутировать импульсные сигналы, постоянную составляющую, аналоговые сигналы, цифровые сигналы; конструкторско-технологическая совместимость с полупроводниковыми приборами и микросхемами; высокая помехозащищенность канала, возможность построения сложных разветвленных устройств управления; управление работой оптопары как входным сигналом, так и оптическим каналом.

К недостаткам можно отнести: значительную потребляемую мощность и низкий КПД, так как необходимо двойное преобразование энергии; чувствительность параметров к воздействию повышенной температуры и ядерной радиации; «старение» параметров; высокий уровень собственных шумов; большое контактное сопротивление в открытом состоянии (единицы и сотни Ом), в то время как контактные устройства имеют контактное сопротивление, равное десятым и сотым долям Ом; существенное ограничение коммутируемой мощности, в то время как контактные устройства при соответствующих конструкциях и габаритах могут коммутировать очень большие мощности (1 кВт и больше); существенное ограничение коммутируемого напряжения (известны конструкции контактных переключателей с напряжениями, не достижимыми для оптоэлектронных коммутаторов).







Дата добавления: 2015-08-12; просмотров: 2384. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2024 год . (0.016 сек.) русская версия | украинская версия