Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение транспортной задачи методом Данцига-Вулфа





Применим метод декомпозиции к Т-задаче:

(6.33)

(6.34)

(6.35)

ij³0. (6.36)

Использование этого метода целесообразно, если m << n или m>>n. Оба варианта решаются идентично. Они отличаются только распределением условий между основной и вспомогательной задачами.

Рассмотрим случай, когда m << n. Тогдо основная задача формируется по условиям пунктов отправления. Следовательно, множество D 0 описывается ограничениями (6.34), а D1 – условиями (6.35) и (6.36).

Очевидно, что множество D1 представляет собой выпуклый многогранник (ограниченность вытекает из условий). Поэтому, как и в общем случае, любую точку в D1 можно представить в виде линейной комбинации его вершин:

(6.37)

S Zv =1; (6.38)

" Zv ³ 0, (6.39)

где Xvij – координаты v -ой вершины.

Подставим (6.37) в (6.33) и (6.34):

.

Введем обозначения:

(6.40)

(6.41)

Тогда основная задача запишется в виде

(6.42)

6.43)

(6.44)

" Zv ³ 0. (6.45)

Для сбалансированной задачи условие (10) выполняется автоматически. Действительно, суммируя (6.43) и используя подстановки (6.41) и (6.35), получаем

в левой части

в правой части Таким образом,

откуда для сбалансированной задачи следует

Поэтому при решении основной задачи условие (6.44) из модели исключается.

Для определения статуса текущего базисного решения основной задачи необходимы относительные оценки. Как и в предыдущем разделе, нахождение оценок связано с решением вспомогательной задачи. Для построения вспомогательной задачи сделаем ряд преобразований:

D v = pTP v - sv =

Так как основная задача решается на минимум, то оптимальному статусу соответствуют неположительные оценки. Поэтому нужно искать максимальную оценку. Если она окажется не больше нуля, то все оценки неположительны и признак оптимальности выполнился. В противном случае необходимо продолжить решение основной задачи.

Значит, задача ставится так:

Вместо поиска максимума на дискретном множестве вершин перейдем к эквивалентной задаче поиска на всем непрерывном множестве D1:

(6.46)

(6.47)

" X ij ³ 0. (6.48)

Эта задача и является вспомогательной. Очевидно, что в оптимальном решении этой задачи Теперь остается выяснить, как найти его.

Вспомогательная задача включает одну группу условий (6.47). Раньше было показано, что каждая переменная входит в такие условия только один раз. Поэтому равенства (6.47) оказываются независимыми и, следовательно, вспомогательная задача распадается на n простейших независимых задач, каждая из которых имеет всего одно условие:

(6.49)

(6.50)

" X ij ³ 0. (6.51)

Критерий вспомогательной задачи равен сумме критериев этих задач:

(6.52)

Оптимальное решение задачи (6.49)-(6.51), как линейной, находится на границе. При этом только одна переменная не равна нулю (базис имеет размерность 1). Поэтому ее решение состоит в определении максимального коэффициета в критерии (6.49). Пусть максимум достигается на индексе i*, то есть

Тогда имеем следующее решение задачи (6.49)-(6.51):

Xvi*j = bj, Xvij =0, " i, i ¹ i*, (6.53)

и максимальная оценка определится как

.

Если L * всп £ 0, то положительных оценок нет и текущее решение основной задачи будет оптимальным.

При L*всп > 0 начинается новая итерация:

1. пo (6.41) и (6.40) находим Р v и sv;

2. вычисляем элементы направляющего столбца как коэффициенты разложения вектора Р v по текущему базису:

a v = P -1B P v;

3. проводим симплекс-преобразование основной задачи, в результате которого получаем новое решение и новую обратную матрицу;

4. вычисляем p T= s TB P -1B;

5. решаем вспомогательную задачу: вычисляем разности , находим оптимальные решения n задач (6.49)-(6.51) и максимальную оценку основной задачи.

Из рассмотренной вычислительной схемы следует, что эффективность метода тем выше, чем сильнее неравенство m << n или m>>n.

Пример.

Решим транспортную задачу с двумя пунктами отправления и четырьмя пунктами назначения:

bi ai        
         
         

Числа в ячейках таблицы - затраты на перевозки Cij.

Исходная модель задачи:

L = SS CijXij àmin

(6.54)

(6.55)

Координирующая задача формируется по условиям (6.54):

" Zv ³0.

Для построения начального решения вводим искусственные переменные:

и модифицируем критерий

Составим начальную таблицу координирующей задачи:

sv Базисные перемен. P 0 P n +1 P n +2
M Zn+ 1      
M Zn+ 2      
pТ M M

В последней строке значения pi получены умножением первого столбца на столбцы P n+i.

Решение вспомогательной задачи представляем в таблице:

bj        
p 1 -C 1 j M -2 M -5 M -1 M -4
p 2 -C 2 j M -1 M -3 M -4 M -2
v =1 X 121=8 X 122=4 X 113=10 X 124=8

Значения переменных в последней строке таблицы получены согласно (6.53). Например, при j =1 максимальная разность равна M -1, поэтому X121 = b1 =8. Клетки с максимальными разностями выделены цветом фона. Вычисляем значение критерия по формуле (6.46):

[(M -1)*8 + (M -3)*4 + (M -1)*10 + (M -2)*8] > 0.

Так как признак оптимальности не выполняется, переходим к итерациям. Находим s1 согласно (6.40):

s 1=1*8 + 3*4 + 1*10 + 2*8 = 46.

Вычисляем компоненты вектора Р 1:

Р 11= X1 13=10;

P 21= X1 21+ X1 2 2 + X1 24= 8+4+8 = 20.

Следовательно, . Находим его разложение по начальному базису:

.

Добавляем столбец P 1с элементами a 1 в начальную таблицу в качестве направляющего столбца:

sv Базисные перемен. P0 P n +1 P n +2 P1 q
M Zn+ 1          
M Zn+ 2          
pТ M M  

 

 
 

Взяв 1-ю строку за направляющую и выполнив симплекс-преобразование, получаем новое решение основной задачи:

Для выяснения статуса этого решения снова находим максимальную оценку основной задачи, решая вспомогательную задачу:

 

 

 
 

Очевидно, что L2всп>0, то есть решение основной задачи не является оптимальным.

Вычисляем коэффициент критерия при Z 2:

s 2=1*8 + 3*4 + 4*10 + 2*8 = 8+12+40+16 = 76.

Определяем компоненты вектора Р 2:

Р 12=0, P22 = 8+4+10+8 = 30

Имея , находим элементы направляющего столбца

 
 

и добавляем его к последней таблице основной задачи:

 
 

В результате симплекс-преобразования получаем:

 
 

Соответствующая вспомогательная задача:

Критерий этой заачи L 3 всп =(23/15)*8–(7/15)*4–(22/15)*10+(8/15)*8=0. Следовательно, получено оптимальное решение основной задачи: Z* 1=1, Z* 2=0, L* = 46*1 + 76*0 = 46.

Находим значения исходных переменных по формуле (6.37), которая для нашей задачи принимает вид:

Таким образом, получено следующее оптимальное решение исходной задачи: X* 21 = 8, X* 22 = 4, X* 13 = 10, X* 24 = 8.

Проверка: L = SS CijXij =1*8 + 3*4 + 1*10 + 2*8=46. Это значение совпадает с вычисленным через переменные Zi.

 

6.3. Задания для самостоятельной работы

Транспортные задачи решить методом декомпозиции Данцига-Вулфа.

 

1 2

bj ai           bj ai        
                     
                     
                     

 

3 4

bj ai           bj ai        
                     
                     
                     

 

5 6

bj ai           bj ai        
                     
                     
                     

 

7 8

bj ai           bj ai        
                     
                     
                     

 

9 10

bj ai           bj ai        
                     
                     
                     

 

11 12

bj ai           bj ai        
                     
                     
                     

 

13 14

bj ai           bj ai        
                     
                     
                     

 

15 16

bj ai           bj ai        
                     
                     
                     

 







Дата добавления: 2015-06-29; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия