Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Эффекты дисперсии высших порядков


1. Третье и высшие приближения теории

2. Фурье-оптика волновых пакетов

3. Распространение фазово-модулированных импульсов. Понятие о аберрации

1.

В тех случаях, когда параметр →0, т.е. система находится в точке нулевой дисперсии, тогда необходимо изучать высшие порядки разложения постоянной распространения в ряд (по частоте пробного поля), т.е. речь идет о параметре и др. Постоянная распространения представляется в форме следующего разложения:

β(ω) = + (ω – ) + + + …,

где – центральная частота волнового пакета

=

Будем рассматривать уравнение распространения в предположении того, что все иные эффекты отсутствуют, а остаются лишь те, которые связаны с проявлением дисперсии в системе. Уравнение будет иметь вид:

( )A (t, z) = 0

Решение данного уравнения:

A (t, z) = , где

– ядро интеграла, выраженное функцией Грина, которая имеет вид

= (-i [ z z (

Нахождение A (t, z) может быть осуществлено приближенно.

В общем случае уравнение решается численными методами и его решение можно представить качественно, основываясь на двух параметрах:

,

 

а б

в г

а – гауссовский импульс на входе

б – ,

в – ,

г – ,

Отсюда следует, что кубическая дисперсия ведет к качественному новому поведению системы. Если работает только дисперсия второго порядка (б), в системе наблюдается обычное симметричное уширение импульса. Если действует дисперсия только третьего порядка, всё зависит от ее знака. Если , происходит глубокая модуляция хвоста импульса, фронт остается гладким. Если , наоборот, модулируется фронт, импульс в среде становится асимметричным, его центр тяжести смещается (в). Наложение дисперсии второго и третьего порядка друг на друга приводит к одновременному уширению и модуляции фронтов импульса (г).

Определим фурье-спектр интенсивности как:

Н(х) = exp (-i )

Тогда можно ввести понятие функции интенсивности импульса в диспергирующей среде следующей формулой:

I (t, z) = = dx.

С помощью данной интенсивности можно ввести среднюю квадратичную длительность =

После преобразования

= , где – входная длительность импульса

= , где

=

В общем виде длительность среднеквадратичного импульса:

=

=

– дисперсионная длина второго порядка

В дальней зоне

τ ≈

Можно ввести минимальную среднеквадратичную длительность

Учет эффектов высшего порядка только уточняет картину, полученную во втором и третьем приближении. При распространении в таких сложных условиях исходят из теоремы площадей: в среде без потерь (𝛼 = 0) независимо от проявляемых дисперсионных нелинейных эффектов, площадь под огибающей импульса должна оставаться постоянной величиной.

2.

Фурье-оптика основывается на теории дифракции Фраунгофера: спектр поля в дальней зоне определяется преобразованием Фурье от распределения комплексной амплитуды на входе. Аббе было предложено влиять на изображение с помощью изменения амплитуд и фаз спектральных компонент в фокальной плоскости. Классические примеры этой техники – метод темного поля и метод фазового контраста.

На аналогичных преобразованиях световых импульсов, происходящих в диспергирующих средах, основана фурье-оптика волновых пакетов. Здесь особый интерес представляют новые методы преобразования коротких импульсов в искусственных диспергирующих средах. Сильно диспергирующие системы, представляющие собой комбинации дифракционных решеток и призм, позволяют развернуть частотный фурье-спектр в пространстве и управлять амплитудами и фазами компонент частотного спектра – совершенно аналогично тому, как это делал Аббе с фурье-компонентами углового спектра.




<== предыдущая лекция | следующая лекция ==>
ЗАКЛЮЧЕНИЕ. Население и территория Земли с многочисленными объектами хозяйства подвержены негативным воздействиям более 50 опасных природных и техногенных процессов. | Физика слуха

Дата добавления: 2015-08-12; просмотров: 378. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия