Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение коэффициентов дискриминантной функции.





Рассмотрим случай для двух дискриминантных переменных:

 

f(x) = а1Х1 + а2Х2.

 

Функция f(X) называется канонической дискриминантной функцией, а величины x1 и x 2дискриминантными переменными. Дискриминантная функция может быть как линейной, так и нелинейной. Выбор вида этой функции зависит от геометрического расположения разделяемых классов в пространстве дискриминантных переменных.

Коэффициенты дискриминантной функции (аi) определяются таким образом, чтобы (X (Х) как можно больше отличались между собой.

Вектор коэффициентов дискриминантной функции определяется по формуле:

 

 

Полученные значения коэффициентов подставляют в формулу и для каждого объекта в обоих множествах вычисляют дискриминантные функции f(X), затем находят среднее значение для каждой группы (). Таким образом, каждому i -му наблюдению, которое первоначально описывалось m -переменными, будет соответствовать одно значение дискриминантной функции, и размерность признакового пространства снижается.

Перед тем как приступить непосредственно к процедуре классификации, нужно определить границу, разделяющую два множества. Такой величиной может быть значение функции, равноудаленное от и ,т.е.

 

.

 

Величина с называется константой дискриминации. Объекты, расположенные над разделяющей поверхностью f(x) = a1x1 + а2х2+…+ архр = с находятся ближе к центру множества М1, следовательно, могут быть отнесены к первой группе, а объекты, расположенные ниже этой поверхности, ближе к центру второго множества, т.е. относятся ко второй группе. Если граница между группами будет таким образом, то суммарная вероятность ошибочной классификации будет минимальной.







Дата добавления: 2015-08-12; просмотров: 666. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия