Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение коэффициентов дискриминантной функции.





Рассмотрим случай для двух дискриминантных переменных:

 

f(x) = а1Х1 + а2Х2.

 

Функция f(X) называется канонической дискриминантной функцией, а величины x1 и x 2дискриминантными переменными. Дискриминантная функция может быть как линейной, так и нелинейной. Выбор вида этой функции зависит от геометрического расположения разделяемых классов в пространстве дискриминантных переменных.

Коэффициенты дискриминантной функции (аi) определяются таким образом, чтобы (X (Х) как можно больше отличались между собой.

Вектор коэффициентов дискриминантной функции определяется по формуле:

 

 

Полученные значения коэффициентов подставляют в формулу и для каждого объекта в обоих множествах вычисляют дискриминантные функции f(X), затем находят среднее значение для каждой группы (). Таким образом, каждому i -му наблюдению, которое первоначально описывалось m -переменными, будет соответствовать одно значение дискриминантной функции, и размерность признакового пространства снижается.

Перед тем как приступить непосредственно к процедуре классификации, нужно определить границу, разделяющую два множества. Такой величиной может быть значение функции, равноудаленное от и ,т.е.

 

.

 

Величина с называется константой дискриминации. Объекты, расположенные над разделяющей поверхностью f(x) = a1x1 + а2х2+…+ архр = с находятся ближе к центру множества М1, следовательно, могут быть отнесены к первой группе, а объекты, расположенные ниже этой поверхности, ближе к центру второго множества, т.е. относятся ко второй группе. Если граница между группами будет таким образом, то суммарная вероятность ошибочной классификации будет минимальной.







Дата добавления: 2015-08-12; просмотров: 666. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия