Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Равновесие при наличии трения.





Изучение равновесия тел с учетом трения сводится обычно к рассмотрению предельного положения равновесия, когда сила трения достигает своего наиболь­шего значения . При аналитическом решении задач реакцию шероховатой связи в этом случае изображают двумя составляющими N и , где . Затем составляют обычные условия равновесия статики, подставляют в них вместо величину и, решая полу­ченные уравнения, определяют искомые величины.

Пример 1. Рассмотрим тело, имеющее вертикальную плоскость симметрии (рис.28). Сечение тела этой плоскости имеет форму прямоугольника. Ширина тела равна 2 a.

К телу в точке С, лежащей на оси симметрии, приложена вертикальная сила и в точке А, лежащей на расстоянии от основания, горизонтальная сила . Реакция плоскости основания (реакция связи) приводится к нормальной реакции и силе трения . Линия действия силы неизвестна. Расстояние от точки С до линии действия силы обозначим x ().

Рис.28

 

Составим три уравнения равновесия:

Согласно закону Кулона , т.е. . (1)

Так как , то (2)

Проанализируем полученные результаты:

Будем увеличивать силу .

Если , то равновесие будет иметь место до тех пор, пока сила трения не достигнет своей предельной величины, условие (1) превратится в равенство. Дальнейшее увеличение силы приведет к скольжению тела по поверхности.

Если , то равновесие будет иметь место до тех пор, пока сила трения не достигнет величины , условие (2) превратится в равенство. Величина x будет равна h. Дальнейшее увеличение силы приведет к тому, что тело станет опрокидываться вокруг точки B (скольжения не будет).

Пример 2. На какое максимальное рас­стояние а может подняться человек по лестнице, приставленной к стене (рис.29)? Если вес чело­века – Р, коэффициент трения скольжения между лестницей и стеной – , между лестни­цей и полом – .

Рис.29

 

Рассматриваем равновесие лестницы с че­ловеком. Показываем силу , нормальные реак­ции и и добавляем силы трения: и . Полагаем, что чело­век находится на расстоянии , при большем значении которого начнётся движение лестницы. Состав­ляем уравнения равновесия.

Подставив значения сил трения и решив систему уравнений, получим

Теперь можно определить и угол под которым надо поставить лестницу, чтоб добраться до стены. Полагая , получим, после преобразований, и

Рис.30

 

Заметим, что если равнодействующая всех активных сил (всех кроме реакций) направлена под углом (рис.30), то нормальная реакция , а сила трения . Для того, чтобы началось скольжение должно выполнятся условие . или . И так как , то . Значит угол должен быть больше угла . Следовательно, если сила действует внутри угла или конуса трения (), то как бы не была ве­лика эта сила, скольжение тела не произойдёт. Такое условие называется усло­вием заклинивания, самоторможения.

Мы рассмотрели скольжение твёрдых тел по поверхности. Но нередко встречается скольжение гибких тел по неплоской по­верхности. Например, нежелательное проскальзывание в ременной передаче ремня по шкиву, или троса, каната, на­мотанного на неподвижный цилиндр.

Пример 3. Пусть имеется нить, перекинутая че­рез неподвижную цилиндрическую поверх­ность (рис.31). За счёт сил трения натяже­ние левого и правого концов этой нити бу­дут различными.

Рис.31 Рис.32

 

Предположим, что нормальная реак­ция и сила трения распределяются равно­мерно по дуге контакта нити на цилиндре. Рассмотрим равновесие участка нити дли­ной . (рис.32). На левом конце этого участка натяжение , на пра­вом . Составляем уравнения равновесия, проектируя силы на оси:

Так как угол - малая величина, то полагаем С учётом этого из уравнений находим и, так как , имеем или Интегрируя, получим . Или

.

Этот результат называется формулой Эйлера.

Например, если нить перекинута через неподвижный шкив и , а ко­эффициент трения , то отношение натяжений . А, обернув цилиндр один раз (), то есть можно удержать груз на другом конце нити силой почти в три раза меньшей веса тела.

 







Дата добавления: 2015-08-12; просмотров: 613. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия