Студопедия — п.2. Разложение вектора по базису.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

п.2. Разложение вектора по базису.

Определение. Пусть – произвольный вектор, – произвольная система векторов. Если выполняется равенство

, (1)

то говорят, что вектор представлен в виде линейной комбинации данной системы векторов. Если данная система векторов является базисом векторного пространства, то равенство (1) называется разложением вектора по базису . Коэффициенты линейной комбинации называются в этом случае координатами вектора относительно базиса .

Теорема. (О разложении вектора по базису.)

Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.

Доказательство. 1) Пусть L произвольная прямая (или ось) и – базис . Возьмем произвольный вектор . Так как оба вектора и коллинеарные одной и той же прямой L, то . Воспользуемся теоремой о коллинеарности двух векторов. Так как , то найдется (существует) такое число , что и тем самым мы получили разложение вектора по базису векторного пространства .

Теперь докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства :

и , где . Тогда и используя закон дистрибутивности, получаем:

.

Так как , то из последнего равенства следует, что , ч.т.д.

2) Пусть теперь Р произвольная плоскость и – базис . Пусть произвольный вектор этой плоскости. Отложим все три вектора от какой-нибудь одной точки этой плоскости. Построим 4 прямых. Проведем прямую , на которой лежит вектор , прямую , на которой лежит вектор . Через конец вектора проведем прямую параллельную вектору и прямую параллельную вектору . Эти 4 прямые высекают параллелограмм. См. ниже рис. 3. По правилу параллелограмма , и , , – базис , – базис .

Теперь, по уже доказанному в первой части этого доказательства, существуют такие числа , что

и . Отсюда получаем:

и возможность разложения по базису доказана.

рис.3.

Теперь докажем единственность разложения по базису. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства : и . Получаем равенство

, откуда следует . Если , то , а т.к. , то и коэффициенты разложения равны: , . Пусть теперь . Тогда , где . По теореме о коллинеарности двух векторов отсюда следует, что . Получили противоречие условию теоремы. Следовательно, и , ч.т.д.

3) Пусть – базис и пусть произвольный вектор. Проведем следующие построения.

Отложим все три базисных вектора и вектор от одной точки и построим 6 плоскостей: плоскость, в которой лежат базисные векторы , плоскость и плоскость ; далее через конец вектора проведем три плоскости параллельно только что построенным трем плоскостям. Эти 6 плоскостей высекают параллелепипед:

рис.4.

По правилу сложения векторов получаем равенство:

. (1)

По построению . Отсюда, по теореме о коллинеарности двух векторов, следует, что существует число , такое что . Аналогично, и , где . Теперь, подставляя эти равенства в (1), получаем:

(2)

и возможность разложения по базису доказана.

Докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису :

и . Тогда

. (3)

Заметим, что по условию векторы некомпланарные, следовательно, они попарно неколлинеарные.

Возможны два случая: или .

а) Пусть , тогда из равенства (3) следует:

. (4)

Из равенства (4) следует, что вектор раскладывается по базису , т.е. вектор лежит в плоскости векторов и, следовательно, векторы компланарные, что противоречит условию.

б) Остается случай , т.е. . Тогда из равенства (3) получаем или

. (5)

Так как – базис пространства векторов лежащих в плоскости, а мы уже доказали единственность разложения по базису векторов плоскости, то из равенства (5) следует, что и , ч.т.д.

Теорема доказана.

 




<== предыдущая лекция | следующая лекция ==>
Турнир знатоков русского языка(Брейн-ринг)6 кл. | Источники налогового права. Понятие налогового права, его предмет, место в системе финансового права.

Дата добавления: 2015-08-12; просмотров: 381. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия