Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Инициализация





Еще до того как получить любые входные данные, регион должен быть проинициализирован, а для этого надо создать начальный список потенциальных синапсов для каждой колонки. Он будет состоять из случайного множества входных битов, выбранных из пространства входных данных. Каждый входной бит будет представлен синапсом с некоторым случайным значением перманентности. Эти значения выбираются по двум критериям. Во-первых, эти случайные значения должны быть из малого диапазона около connectedPerm (пороговое значение – минимальное значение перманентности при котором синапс считается «действующим» («подключенным»)). Это позволит потенциальным синапсам стать подключенными (или отключенными) после небольшого числа обучающих итераций. Во-вторых, у каждой колонки есть геометрический центр ее входного региона и значения перманентности должны увеличиваться по направлению к этому центру (т.е. у центра колонки значения перманентности ее синапсов должны быть выше).

Фаза 1: Перекрытие (Overlap)

Первая фаза вычисляет значение перекрытия каждой колонки с заданным входным вектором (данными). Перекрытие для каждой колонки это просто число действующих синапсов подключенных к активным входным битам, умноженное на фактор ускорения («агрессивности») колонки. Если полученное число будет меньше minOverlap, то мы устанавливаем значение перекрытия в ноль.

 

1. for c in columns

2.

3. overlap(c) = 0

4. for s in connectedSynapses(c)

5. overlap(c) = overlap(c) + input(t, s.sourceInput)

6.

7. if overlap(c) < minOverlap then

8. overlap(c) = 0

Else

10. overlap(c) = overlap(c) * boost(c)

 

Фаза 2: Ингибирование (подавление)

На второй фазе вычисляется какие из колонок остаются победителями после применения взаимного подавления. Параметр desiredLocalActivity контролирует число колонок, которые останутся победителями. Например, если desiredLocalActivity равен 10, то колонка останется победителем если ее значение перекрытия выше чем значения перекрытия 10 самых лучших колонок в ее радиусе подавления (ингибирования).

 

11. for c in columns

12.

13. minLocalActivity = kthScore(neighbors(c), desiredLocalActivity)

14.

15. if overlap(c) > 0 and overlap(c) ≥ minLocalActivity then

16. activeColumns(t).append(c)

17.

 

Фаза 3: Обучение

На третьей фазе происходит обучение. Здесь обновляются значения перманентности всех синапсов, если это необходимо, равно как и фактор ускорения («агрессивности») колонки вместе с ее радиусом подавления.

Основное правило обучения имплементировано в строках 20-26. Для победивших колонок, если их синапс был активен, его значение перманентности увеличивается, а иначе – уменьшается. Значения перманентности ограничены промежутком от 0.0 до 1.0.

В строках 28- 36 имплементирован механизм ускорения. Имеется два различных механизма ускорения помогающих колонке обучать свои соединения (связи). Если колонка не побеждает достаточно долго (что измеряется в activeDutyCycle), то увеличивается ее общий фактор ускорения (строки 30-32). Альтернативно, если подключенные синапсы колонки плохо перекрываются с любыми входными данными достаточно долго (что измеряется в overlapDutyCycle), увеличиваются их значения перманентности (строки 34-36). Обратите внимание: если обучение выключено, то boost(c) замораживается.

И наконец, в конце фазы 3 обновляется радиус подавления колонки (строка 38).

 

18. for c in activeColumns(t)

19.

20. for s in potentialSynapses(c)

21. if active(s) then

22. s.permanence += permanenceInc

23. s.permanence = min(1.0, s.permanence)

Else

25. s.permanence -= permanenceDec

26. s.permanence = max(0.0, s.permanence)

27.

28. for c in columns:

29.

30. minDutyCycle(c) = 0.01 * maxDutyCycle(neighbors(c))

31. activeDutyCycle(c) = updateActiveDutyCycle(c)

32. boost(c) = boostFunction(activeDutyCycle(c), minDutyCycle(c))

33.

34. overlapDutyCycle(c) = updateOverlapDutyCycle(c)

35. if overlapDutyCycle(c) < minDutyCycle(c) then

36. increasePermanences(c, 0.1*connectedPerm)

37.

38. inhibitionRadius = averageReceptiveFieldSize()

39.

 







Дата добавления: 2015-08-12; просмотров: 417. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия