Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дозиметрические приборы





 

Принцип обнаружения ионизирующих (радиоактивных) излучений (нейтронов, гамма-лучей, бета- и альфа-частиц) основан на способности этих излучений ионизировать вещество среды, в которой они распространяются. Ионизация, в свою очередь, является причиной физических и химических изменений в веществе, которые могут быть обнаружены и измерены. К таким изменениям среды относятся: изменения электропроводности веществ (газов, жидкостей, твердых материалов); люминесценция (свечение) некоторых веществ; засвечивание фотопленок; изменение цвета, окраски, прозрачности, сопротивления электрическому току некоторых химических растворов и др.

Для обнаружения и измерения ионизирующих излучений используют следующие методы: фотографический, сцинтилляционный, химический и ионизационный.

Фотографический метод основан на степени почернения фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого серебра, содержащегося в фотоэмульсии, распадаются на серебро и бром. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при ее проявлении. Плотность почернения пропорциональна поглощенной энергии излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. На этом принципе основаны индивидуальные фотодозиметры.

Сцинтилляционный метод. Некоторые вещества (сернистый цинк, йодистый натрий) под воздействием ионизирующих излучений светятся. Количество вспышек пропорционально мощности дозы излучения и регистрируется с помощью специальных приборов;— фотоэлектронных умножителей.

Химический метод. Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов НО2 и ОН, образующихся в воде при ее облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе, излучения (поглощенной энергии). На этом принципе основаны химические дозиметры ДП-70 и ДП-70М.

В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений.

Ионизационный метод. Под воздействием излучений в изолированном объеме происходит ионизация газа: электрически нейтральные атомы (молекулы) газа разделяются на положительные и отрицательные ионы. Если в этот объем поместить два электрода, к которым приложено постоянное напряжение, то между электродами создается электрическое поле. При наличии электрического поля в ионизированном газе возникает направленное движение заряженных частиц, т.е. через газ проходит электрический ток, называемый ионизационным. Измеряя ионизационный ток, можно судить об интенсивности ионизирующих излучений.

Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство (рис. 15) и включают: воспринимающее устройство (ионизационную камеру или газоразрядный счетчик) 1, усилитель ионизационного тока (электрическая схема, включающая электрометрическую лампу 2, нагрузочное сопротивление 3 и другие элементы), регистрирующее устройство 4 (микроамперметр) и источник питания 5 (сухие элементы или аккумуляторы).

Ионизационная камера представляет собой заполненный воздухом замкнутый объем, внутри которого находятся два изолированных друг от друга электрода (типа конденсатора). К электродам камеры приложено напряжение от источника постоянного тока. При отсутствии ионизирующего излучения в цепи ионизационной камеры тока не будет, поскольку воздух является изолятором. При воздействии же излучений в ионизационной камере молекулы воздуха ионизируются. В электрическом поле положительно заряженные частицы перемещаются к катоду, а отрицательные — к аноду. В цепи камеры возникает ионизационный ток, который регистрируется микроамперметром. Числовое значение ионизационного тока пропорционально мощности излучения. Следовательно, по ионизационному току можно судить о мощности дозы излучений, воздействующих на камеру. Ионизационная камера работает в области насыщения.

Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой.

Газоразрядный счетчик представляет собой полый герметичный металлический или стеклянный цилиндр, заполненный разреженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счетчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счетчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока.

В газоразрядных счетчиках используют принцип усиления газового разряда. В отсутствие радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить об интенсивности радиоактивных излучений.

Дозиметрические приборы предназначаются для:

ü контроля облучения — получения данных о поглощенных или экспозиционных дозах излучения людьми и сельскохозяйственными животными;

ü контроля радиоактивного заражения радиоактивными веществами людей, сельскохозяйственных животных, а также техники, транспорта, оборудования, средств индивидуальной защиты, одежды, продовольствия, воды, фуража и других объектов;

ü радиационной разведки — определения уровня радиации на местности.

Кроме того, с помощью дозиметрических приборов может быть определена наведенная радиоактивность в облученных нейтронными потоками различных технических средствах, предметах и грунте.

Для радиационной разведки и дозиметрического контроля на объекте используют дозиметры и измерители мощности экспозиционной дозы, тактико-технические характеристики которых приведены в табл. 9.

Комплекты индивидуальных дозиметров ДП-22В и ДП-24, имеющих дозиметры карманные прямо показывающие ДКП-50А, предназначенные для контроля экспозиционных доз гамма-облучения, получаемых людьми при работе на зараженной радиоактивными веществами местности или при работе с открытыми и закрытыми источниками ионизирующих излучений.

Комплект дозиметров ДП-22В (рис. 16,а) состоит из зарядного устройства 1 типа ЗД-5 и 50 индивидуальных дозиметров карманных прямо-показывающих 2 типа ДКП-50А. В отличие от ДП-22В комплект дозиметров ДП-24 (рис. 16, б) имеет пять дозиметров ДКП-50А.

Зарядное устройство 1 предназначено для зарядки дозиметров ДКП-50А. В корпусе ЗД-5 размещены: преобразователь напряжения, выпрямитель высокого напряжения, потенциометр-регулятор напряжения, лампочка для подсвета зарядного гнезда, микровыключатель и элементы питания. На верхней панели устройства находятся: ручка потенциометра 3, зарядное гнездо 5 с колпачком 6 и крышка отсека питания 4. Питание осуществляется от двух сухих элементов типа 1,6-ПМЦ-У-8, обеспечивающих непрерывную работу прибора не менее 30 ч при токе потребления 200 мА. Напряжение на выходе зарядного устройства плавно регулируется в пределах от 180 до 250 В.

Дозиметр карманный прямопоказывающий ДКП-50А предназначен для измерения экспозиционных доз гамма-излучения. Конструктивно он выполнен в форме авторучки (рис. 17). Дозиметр состоит из дюралевого корпуса 1, в котором расположены ионизационная камера с конденсатором, электроскоп, отсчетное устройство и зарядная часть.

 

 

Основная часть дозиметра—малогабаритная ионизационная камера 2, к которой подключен конденсатор 4 с электроскопом. Внешним электродом системы камера — конденсатор является дюралевый цилиндрический корпус /, внутренним электродом — алюминиевый стержень 5. Электроскоп образует изогнутая часть внутреннего электрода (держатель) и приклеенная к нему платинированная визирная нить (подвижной элемент) 3.

Таблица 9

 

Наименование Назначение Диапазон измерения Погрешность измеренной дозы, % Диапазон рабочих температур, °С Основные данные по комплектности Масса, кг
Дозиметры
Комплект дозиметров ДП-22В, имеющий ДКП-50 А Для измерения экспозиционных доз гамма-излучения 2—50 Р ±10 —40...+50 ДКП-50А-50 шт. Зарядное устройство ЗД-5 — 1 шт. ДКП-50А- 32 г. Комплект в укладоч-ном ящике -5 кг; ЗД—5—1,4 кг  
Комплект дозиметров ДП-24, имеющий ДКП-50А То же 2—50 Р ±10 —40...+50 ДКП-50А—5 шт Зарядное устройство ЗД-5 — 1 шт. ДКП-50А- 32 г. Комплект в укладоч-ном ящике—3,2 кг.
Комплект индивидуальных дозиметров ИД-1 Для измерения поглощенных доз гамма нейтронного излучения 20— 500 рад ±20 —50...+50 ИД-1 — 10 шт. Зарядное устройство ЗД-6 — 1 шт. ИД-1-40 г Комплект в футляре — 1,5 кг. ЗД-6 —0,5 кг
Измерители мощности экспозиционной дозы (радиометры — рентгенометры)
Измеритель мощности дозы ДП-5А (Б) Для измерения мощности экспозиционной дозы гамма-излу-чений на местности и радиоактив-ного заражения различных поверхностей по гамма-излучению 0,05 мР/ч— 200 Р/ч ±30 —40...+50 при влажности 65±15 % Прибор в футляре с контроль-ным источником бета-излучения — 1 шт. Удлинительная штанга — 1 шт. 2,8
Измеритель мощности дозы ДП-5В То же 0,05 мР/ч— 200 Р/ч ±30 —40...+50 при влажности 65±15 % То же 3,2
Бортовой измеритель мощности ДП-ЗБ Для измере-ния мощнос-ти экспози-ционной до-зы гамма-из-лучений на местности 0,1—500 Р/ч ±10 (±15 на первом поддиапазоне) —40... +50 Измерительный пульт — 1 шт. Выносной блок — 1 шт. ЗИП—1 компл. 4,4
               

В передней части корпуса расположено отсчетное устройство — микроскоп с 90-кратным увеличением, состоящий из окуляра 9, объектива 12 и шкалы 10. Шкала имеет 25 делений (от 0 до 50). Цена одного деления соответствует двум рентгенам. Шкалу и окуляр крепят фасонной гайкой.

В задней части корпуса находится зарядная часть, состоящая из диафрагмы 7 с подвижным контактным штырем 6. При нажатии штырь 6 замыкается с внутренним электродом ионизационной камеры. При снятии нагрузки контактный штырь диафрагмой возвращается в исходное положение. Зарядную часть дозиметра предохраняет от загрязнения защитная оправа 8. Дозиметр крепится к карману одежды с помощью держателя 11.

Принцип действия дозиметра по добен действию простейшего электроскопа. В процессе зарядки дозиметра визирная нить 3 электроскопа отклоняется от внутреннего электрода 5 под влиянием сил электростатического отталкивания. Отклонение нити зависит от приложенного напряжения, которое при зарядке регулируют и подбирают так, чтобы изображение визирной нити совместилось с нулем шкалы отсчетного устройства.

При воздействии гамма-излучения на заряженный дозиметр в рабочем объеме камеры возникает ионизационный ток. Ионизационный ток уменьшает первоначальный заряд конденсатора и камеры, а следовательно, и потенциал внутреннего электрода. Изменение потенциала, измеряемого электроскопом, пропорционально экспозиционной дозе гамма-излучения. Изменение потенциала внутреннего электрода приводит к уменьшению сил электростатического отталкивания между визирной нитю и держателем электроскопа. В результате визирная нить сближается с держателем, а изображение ее перемещается по шкале отсчетного устройства. Держа дозиметр против света и наблюдая через окуляр за нитью, можно в любой момент произвести отсчет полученной экспозиционной дозы излучения.

Дозиметр ДКП-50А обеспечивает измерение индивидуальных экспозиционных доз гамма-излучения в диапазоне от 2 до 50 Р при мощности экспозиционной дозы излучения от 0,5 до 200 Р/ч. Саморазряд дозиметра в нормальных условиях не превышает двух делений за сутки.

Зарядка дозиметра ДКП-50 А производится перед выходом на работу в район радиоактивного заражения (действия гамма-излучения) в следующем порядке:

ü отвинтить защитную оправу дозиметра (пробку со стеклом) и защитный колпачок зарядного гнезда ЗД-5;

ü ручку потенциометра зарядного устройства повернуть влево до отказа;

ü дозиметр вставить в зарядное гнездо зарядного устройства, при этом включается подсветка зарядного гнезда и высокое напряжение;

ü наблюдая в окуляр, слегка нажать на дозиметр и, поворачивая ручку потенциометра вправо, установить нить на «О» шкалы, после чего вынуть дозиметр из зарядного гнезда;

ü проверить положение нити на свет: ее изображение должно быть на отметке «0», завернуть защитную оправу дозиметра и колпачок зарядного гнезда.

Экспозиционную дозу излучения определяют по положению нити на шкале отсчетного устройства. Отчет необходимо производить при вертикальном положении нити, чтобы исключить влияние на показание дозиметра прогиба нити от веса.

Комплект ИД-1 предназначен для измерения поглощенных доз гамма-нейтронного излучения. Он состоит из индивидуальных дозиметров. ИД-1 и зарядного устройства ЗД-6. Принцип работы дозиметра ИД-1 аналогичен принципу работы дозиметров для измерения экспозиционных доз гамма-излучения (например, ДКХ1-50А).

Измерители мощности дозы ДП-5А (Б) и ДП-5В предназначены для измерения уровней радиации на местности и радиоактивной зараженности различных предметов по гамма-излучению. Мощность гамма-излучения определяется в миллирентгенах или рентгенах в час для той точки пространства, в которой помещен при измерениях соответствующий счетчик прибора. Кроме того, имеется возможность обнаружения бета-излучения.

Диапазон измерений по гамма-излучению от 0,05 мР/ч до 200 Р/ч в диапазоне энергий гамма-квантов от 0,084 до 1,25 Мэв. Приборы ДП-5А, ДП-5Би ДП-5В имеют шесть поддиапазонов измерений (табл. 10). Отсчет показаний приборов производится по нижней шкале микроамперметра в Р/ч, по верхней шкале — в мР/ч с последующим умножением на соответствующий коэффициент поддиапазона. Участки шкалы от нуля до первой значащей цифры являются нерабочими.

Таблица 10

 

Поддиапазоны Положение ручки переключа-теля поддиа-пазонов Шкала Единица Пределы измерений Время установления показателей, с
I   0—200 Р/ч 5—200  
II XI000 0—5 мР/ч 500—5000  
III X100 0—5 To же 50—500  
IV X10 0—5 » 5—50  
V XI 0—5 » 0,5—5  
VI X0,l 0—5 » 0,05-0,5  

Приборы имеют звуковую индикацию на всех поддиапазонах, кроме первого. Звуковая индикация прослушивается с помощью головных телефонов 8 (рис. 18).

Питание приборов осуществляется от трех сухих элементов типа КБ-1 (один из них для подсвета шкалы), которые обеспечивают непрерывность работы в нормальных условиях не менее 40 ч — ДП-5А и 55 ч — ДП-5В. Приборы могут подключаться к внешним источникам постоянного тока напряжением 3,6 и 12В — ДП-5А и 12 или 24В — ДП-5В, имея для этой цели колодку питания и делитель напряжения с кабелем длиной 10 м соответственно.

Устройство приборов ДП-5А (Б) и ДП-5В. В комплект прибора входят: футляр с ремнями; удлинительная штанга; колодка питания к ДП-5А (Б) и делитель напряжения к ДП-5В; комплект эксплуатационной документации и запасного имущества; телефон и укладочный ящик.

Прибор состоит (см. рис. 18) из измерительного пульта; зонда в ДП-5А (Б) или блока детектирования в ДП-5В 1, соединенных с пультами гибкими кабелями 2; контрольного стронциево-иттриевого источника бета-излучения для проверки работоспособности приборов (с внутренней стороны крышки футляра у ДП-5А(Б) 9 и на блоке детектирования у ДП-5В).

Измерительный пульт состоит из панели и кожуха. На панели измерительного пульта размещены: микроамперметр с двумя измерительными шкалами 3; переключатель поддиапазонов 4; ручка «Режим» 6 (потенциометр регулировки режима); кнопка сброса показаний («Сброс») 7; тумблер подсвета шкалы 5; винт установки нуля 10; гнездо включения телефона И. Панель крепится к кожуху двумя невыпадающими винтами. Элементы схемы прибора смонтированы на шасси, соединенном с панелью при помощи шарнира и винта. Внизу кожуха имеется отсек для размещения источников питания. При отсутствии элементов питания сюда может быть подключен делитель напряжения от источников постоянного тока. Воспринимающими устройствами приборов являются газоразрядные счетчики, установленные: в приборе ДП-5А— один (СИЗБГ) в измерительном пульте и два (СИЗБГ и СТС-5) в зонде; в приборе ДП-5В — два (СБМ-20 и СИЗБГ) в блоке детектирования.

Зонд и блок детектирования 1 представляет собой стальной цилиндрический корпус с окном для индикации бета-излучения, заклеенным этилцеллюлозной водостойкой пленкой, через которую проникают бета-частицы. На корпус надет металлический поворотный экран, который фиксируется в двух положениях («Г» и «Б») на зонде и в трех положениях («Г», «Б» и «К») на блоке детектирования. В положении «Г» окно корпуса закрывается экраном и в счетчик могут проникать только гамма-лучи. При повороте экрана в положение «Б» окно корпуса открывается и бета-частицы проникают к счетчику. В положении «К» контрольный источник бета-излучения, который укреплен в углублении на экране, устанавливается против окна и в этом положении проверяется работоспособность прибора ДП-5В.

На корпусах зонда и блока детектирования имеются по два выступа, с помощью которых они устанавливаются на обследуемые поверхности при индикации бета-зараженности. Внутри корпуса находится плата, на которой смонтированы газоразрядные счетчики, усилитель-нормализатор и электрическая схема.

Футляр прибора состоит: ДП-5А — из двух отсеков (для установки пульта и зонда); ДП-5В — из трех отсеков (для размещения пульта, блока детектирования и запасных элементов питания). В крышке футляра имеются окна для наблюдения за показаниями прибора. Для ношения прибора к футляру присоединяются два ремня.

Телефон 8 состоит из двух малогабаритных телефонов типа ТГ-7М и оголовья из мягкого материала. Он подключается к измерительному пульту и фиксирует наличие радиоактивных излучений: чем выше мощность излучений, тем чаще звуковые щелчки.

Из запасных частей в комплект прибора входят чехлы для зонда, колпачки, лампочки накаливания, отвертка, винты.

Подготовка прибора к работе проводится в следующем по рядке:

ü извлечь прибор из укладочного ящика, открыть крышку футляра, провести внешний осмотр, пристегнуть к футляру поясной и плечевой ремни;

ü вынуть зонд или блок детектирования; присоединить ручку к зонду, а к блоку детектирования — штангу (используемую как ручку);

ü установить корректором механический нуль на шкале микроамперметра;

ü подключить источники питания;

ü включить прибор, поставив ручки переключателей поддиапазонов в положение: «Реж.» ДП-5А и «▲» (контроль режима) ДП-5В (стрелка прибора должна установиться в режимном секторе); в ДП-5А с помощью ручки потенциометра стрелку прибора установить в режимном секторе на «▲». Если стрелки микроамперметров не входят в режимные сектора, необходимо заменить источники питания.

Проверку работоспособности приборов проводят на всех поддиапазонах, кроме первого («200»), с помощью контрольных источников, для чего экраны зонда и блока детектирования устанавливают в положениях «Б» и «К» соответственно и подключают телефоны. В приборе ДП-5А открывают контрольный бета-источник, устанавливают зонд опорными выступами на крышку футляра так, чтобы источник находился против открытого окна зонда. Затем, переводя последовательно переключатель поддиапазонов в положения «X 1000»,«Х 100», «X 10», «X 1» и «X 0,1», наблюдают за показаниями прибора и прослушивают щелчки в телефонах. Стрелки микроамперметров должны зашкаливать на VI и V поддиапазонах, отклоняться на IV, а на III и II могут не отклоняться из-за недостаточной активности контрольных бета-источников.

После этого ручки переключателей поставить в положение «Выкл.» ДП-5А и «▲» — ДП-5В; нажать кнопки «Сброс»; повернуть экраны в положение «Г». Приборы готовы к работе.

Радиационную разведку местности, с уровнями радиации от 0,5 до 5 Р/ч, производят на втором поддиапазоне (зонд и блок детектирования с экраном в положении «достаются в кожухах приборов), а свыше 5 Р/ч — на первом поддиапазоне. При измерении прибор должен находиться на высоте 0,7—1 м от поверхности земли.

Степень радиоактивного заражения кожных покровов людей, их одежды, сельскохозяйственных животных, техники, оборудования, транспорта и т. п. определяется в такой последовательности. Измеряют гамма-фон в месте, где будет определяться степень заражения объекта, но не менее 15—20 м от обследуемого объекта. Затем зонд (блок детектирования) упорами вперед подносят к поверхности объекта на расстояние 1,5—2 см и медленно перемещают над поверхностью объекта (экран зонда в положении «Г»). Из максимальной мощности экспозиционной дозы, измеренной на поверхности объекта, вычитают гамма-фон. Результат будет характеризовать степень радиоактивного заражения объекта.

Для определения наличия наведенной активности техники, подвергшейся воздействию нейтронного излучения, производят два измерения — снаружи и внутри техники. Если результаты измерений близки между собой, это означает, что техника имеет наведенную активность.

Для обнаружения бета-излучений необходимо установить экран зонда в положении «Б», поднести к обследуемой поверхности на расстояние 1,5—2 см. Ручку переключателя поддиапазонов последовательно поставить в положения «X 0,1», «X 1», «X 10» до получения отклонения стрелки микроамперметра в пределах шкалы. Увеличение показаний прибора на одном и том же поддиапазоне по сравнению с гамма-измерением показывает наличие бета-излучения.

Если надо выяснить, с какой стороны заражена поверхность брезентовых тентов, стен и перегородок сооружений и других прозрачных для гамма-излучений объектов, то производят два замера в положении зонда «Б» и «Г». Поверхность заражена с той стороны, с которой показания прибора в положении зонда «Б» заметно выше.

При определении степени радиоактивного заражения воды отбирают две пробы общим объемом 1,5—10 л. Одну — из верхнего слоя водоисточника, другую — с придонного слоя. Измерения производят зондом в положении «Б», раслолагая его на расстоянии 0,5—1 см от поверхности воды, и снимают показания, по верхней шкале.

На шильдиках крышек футляров даны сведения о допустимых нормах радиоактивного заражения и указаны поддиапазоны, на которых они измеряются.

Бортовой измеритель мощности дозы ДП-ЗБ (рис. 19) предназначен для определения уровней радиации на местности, зараженной радиоактивными веществами. Его можно устанавливать на автомобилях, самолетах, вертолетах, речных катерах, тепловозах, а также в убежищах и противорадиационных укрытиях. Питание прибора осуществляется от источников постоянного тока напряжением 12 или 26 В.

 

В комплект прибора входит: измерительный пульт Л, выносной блок Б, кабель питания с прямым разъемом 1, кабель с угловым разъемом 9 для соединения пульта с выносным блоком Б, крепежные скобы, техническая документация и вспомогательные принадлежности. На панели измерительного пульта размещены: микроамперметр с двухрядной шкалой 3 (цена деления верхней шкалы 0,05 Р/ч, нижней — 50 Р/ч), лампа световой индикации 6, лампа подсвета 4 шкалы микроампер метрал1 указателя поддиапазонов 5, предохранители 8, кнопка «Проверка» 2, переключатель поддиапазонов 7 на шесть положений: выключено «Выкл.», включено «Вкл.», «X 1», «X 10», «X 100» и «500».

Подготовка прибора ДП-ЗБ к работе: проверка комплекта, внешний осмотр прибора и принадлежностей, сборка прибора, подключение к цепи питания и проверка работоспособности.

Работоспособность прибора проверяется в положении переключателя «Вкл.» нажатием кнопки «Проверка». При этом стрелка микроамперметра должна находиться в пределах 0,4— 0,8 Р/ч, а индикаторная лампа давать частые вспышки или гореть непрерывно.

Перед измерением уровней радиации переключатель поставить в положение «Вкл.» и выждать, пока стрелка микроамперметра не установится в пределах зачерненного участка шкалы. Затем переключатель поставить в положение первого поддиапазона («XI») и через 30 с отсчитать показания по верхней шкале микроамперметра. Если стрелка зашкаливает, переключатель последовательно устанавливать в положение второго, третьего и четвертого поддиапазонов. Показания на первых трех поддиапазонах снимать по верхней шкале и умножать их соответственно на коэффициенты 1, 10, 100. На четвертом поддиапазоне показания снимать по нижней шкале без умножения на какой-либо коэффициент.

 







Дата добавления: 2015-08-12; просмотров: 814. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия