Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрическая сущность картографического изображения.





Геометрия картографического изображения связана с пред­ставлением о фигуре Земли — ее геометрической форме и раз­мерах.

Географическое положение точек на земной поверхности опре­деляется, как известно, их координатами. Поэтому математическая задача построения картографического изображения заключается в том, чтобы спроектировать и изобразить шарообразную поверх­ность Земли на плоскости (карте), строго соблюдая при этом од­нозначное соответствие между координатами точек на земной по­верхности и координатами их изображения на карте.

Такое проектирование сопряжено с необходимостью отнесения результатов полевых геодезических измерений при их вычисли­тельной обработке и отображении на картах к определенной, хорошо изученной в геометрическом отношении поверхности, которая наиболее близко подходит по своей форме и размерам к реальной фигуре Земли, но более проста по сравнению с нею.

Под фигурой Земли понимают математическую фигуру, ограниченную поверхностью среднего уровня Мирового океана в спокойном его состоянии, мысленно продолженную под всеми континентами. Эта воображаемая поверхность, перпендикуляр­ная в любой ее точке к направлению отвесной линии (на­правлению силы тяжести), называется основной уровненной поверхностью, а фигура Земли, образованная ею - геоидом.

Геоид, как показали исследования, имеет всюду выпуклую, но асимметричную, сложную и неправильную в геометрическом отно­шении фигуру (рис. 1 и 2), которая, однако, весьма мало отлича­ется от эллипсоида вращения, т. е. правильного геометрического тела, образуемого вращением эллипса вокруг его малой оси. По­этому при геодезических измерениях и составлении карт фигуру Земли и принимают за такой эллипсоид.

Эллипсоид вращения, поверхность которого наиболее близка к поверхности геоида, называют земным эллипсоидом, или земным сфероидом.

 

Рис. 1. Фигура Земли: геоид и земной эллипсоид (сфероид).

 

На картах эту поверхность представляет сетка географических меридианов и параллелей земного эллипсоида. Такая сетка на картах называется картографической сеткой. При состав­лении карты прежде строят картографическую сетку, а затем, пользуясь ею как канвой, наносят по материалам топографической съемки, аэроснимкам и другим материалам изображение всех объектов, которые должны быть показаны на карте.

 

 

 

Рис. 2. Физическая и математическая поверхность Земли.

 

Картографические сетки рассчитываются и строятся на картах по тем или иным математическим формулам, выражающим определенную для данной карты зависимость между географическими координатами точек на поверхности земного эллипсоида и плоскими прямоугольными координатами соответствующих им точек на карте.

Таким образом, нанесение на карту изображения земной по­верхности представляет собой процесс двойного проектирования, включающий одновременно переход от действительных очертаний изображаемых объектов к их горизонтальным проложе­ниям на поверхности земного эллипсоида, т. е. проектирование физической поверхности Земли - на эллипсоид, по нормалям (пер­пендикулярам) к его поверхности (рис. 3), и изображение на пло­скости, т. е. на карте, этих горизонтальных проложений в задан­ном масштабе и по определенным для данной карты математиче­ским правилам.

 


Рис. 3.Горизонтальные проложения точки и различного вида

линий на поверхности земного эллипсоида.

 

Математически определяемый способ построения на плоскости картографической сетки того или иного вида, на основе которой на карте изображают поверхность Земли, называется карто­графической проекцией.







Дата добавления: 2015-08-12; просмотров: 3668. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия