Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ ПО СКОРОСТЯМ





(РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА)

 

Молекулы газа движутся с самыми разными скоростями, причем, и величина, и направление скорости каждой отдельной молекулы непрерывно меняются из-за соударений. Каждая молекула при н.у. испытывает за секунду порядка 109 столкновений. Хаотичность движения предполагает равную вероятность движения в любом направлении, т.е. равномерное распределение молекул по направлениям. Иначе дело обстоит с численными значениями скоростей. Согласно МКТ, возможные значения u лежат в интервале от нуля до бесконечности и отнюдь не равновероятны. Задача состоит в том, чтобы установить, какая часть от общего числа молекул движется с той или иной скоростью, т.е. найти закон распределения молекул по скоростям.

При выводе этого закона Максвелл предполагал, что газ состоит из очень большого числа N одинаковых молекул, находящихся в состоянии беспорядочного теплового движения при постоянной температуре Т. Причём, никакие внешние силы на газ не действуют.

Если разбить всю числовую ось скоростей молекул на малые интервалы dυ, то на каждый из них придется некоторое своё число молекул dN(υ) (рис.5): Число dN(υ), очевидно, будет пропорционально общему числу молекул N и ширине интервала dυ. Чтобы определить dN(υ) через N и dυ, необходимо ввести коэффициент пропорциональности, значения которого будут разными для разных интервалов, т.к. т.е. значения скоростей не равновероятны. Т.е. этот коэффициент будет представлять собой некую функцию f(υ). Теперь

 

dN(υ) = f(υ)N∙dυ. (21)

 

Множитель f(υ) характеризует распределение молекул по скоростям и называется функцией распределения. Смысл этой функции в том, что она определяет, какая часть молекул имеет скорости, лежащие в интервале от υ до υ + dυ, т.е. вероятность того, что произвольно взятая молекула в данном газе имеет значение скорости из интервала dυ. Из (21) –

. (22)

 

Применяя методы теории вероятностей, Максвелл нашел выражение для функции распределения:

 

. (23)

 

Относительное число молекул, скорости которых лежат в интервале от υ до υ + dυ, как это видно из рисунка, находятся, как площадь заштрихованной полоски:

dN/N = f(υ)∙dυ.

Очевидно, что площадь под кривой равна единце, т.е.

(24)

Значение скорости, на которую приходится максимум функции распределения, называется наиболее вероятной скоростью. Ее можно найти, исследовав функцию f(υ) на экстремум:

 

(25).

 

Из формулы (25) следует, что при повышении температуры максимум функции f(υ) сместится вправо. Но т.к. площадь под кривой всегда равна единице, то это означает, что при повышении температуры кривая распределения будет растягиваться и понижаться (см. пунктирную линию рис. 6).

Из закона распределения скоростей можно получить выражение для средней арифметической скорости молекул:

 

(26).

 

 

ОПЫТ ШТЕРНА (1920 Г.)******

Для экспериментальной проверки закона Максвелла немецкий физик Штерн поставил опыт: два коаксиальных жестко скрепленных друг с другом цилиндра вращались с постоянной угловой скоростью ω; вокруг общей оси, вдоль которой была натянута платиновая нить, покрытая серебром. При пропускании тока, нить нагревалась, и серебро испарялось. Атомы серебра разлетались в разные стороны. Некото рые из них вылетали из внутреннего цилиндра через узкую щель и в результате осаждались на внутренней стенке внешнего второго цилиндра. При этом, в зависимости от скорости υ;, отклонение атомов от точки А, будет разным. Чем меньше скорость, тем больше отклонение – зона АВ. Точка А лежит на прямой нить – щель. В эту точку атомы будут попадать, если цилиндры вращаться не будут. Исследование профиля следа АВ (поперечный разрез следа), позволяет судить о распределении атомов серебра по скоростям. Была установлено: профиль следа соответствует форме функции распределения Максвелла.







Дата добавления: 2015-08-12; просмотров: 425. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия