ВОПРОС 4. Основные законы массопередачи и массоотдачи
В процессах массопередачи следует различать несколько случаев массообмена: между потоком газа или пара и потоком жидкости; между потоками жидкости; между потоками жидкости и твердой фазой; между потоками газа или пара и твердой фазой. Основные законы массопередачи — закон молекулярной диффузии (первый закон Фика), закон массоотдачи (закон Ньютона — Щукарева) и закон массопроводности. Закон молекулярной диффузии (первый закон Фика), основанный на том, что диффузия в газах и растворах жидкостей происходит в результате хаотического движения молекул, приводящего к переносу молекул распределяемого вещества из зоны высоких концентраций в зону низких концентраций, гласит: количество вещества, перенесенного путем диффузии, пропорционально градиенту концентраций, площади, перпендикулярной направлению диффузионного потока, и продолжительности процесса:
Коэффициент диффузии показывает, какое количество вещества диффундирует через поверхность 1 м2 в течение 1 ч при разности концентраций на расстоянии 1 м, равной единице. Знак «минус» в правой части уравнения (9) показывает, что при молекулярной диффузии концентрация убывает. определится из уравнения (9):
Значения коэффициента диффузии обычно берут из справочников или находят по следующим формулам: для газов
для жидкостей
Коэффициенты диффузии зависят от агрегатного состояния систем. Для газов коэффициенты диффузии составляют (0,1...1,0)10-4 м2/с Они примерно на четыре порядка выше, чем для жидкостей. С увеличением температуры коэффициенты диффузии возрастают, а с повышением давления уменьшаются. Коэффициенты диффузии в газах почти не зависят от концентрации, в то время как коэффициенты диффузии в жидкостях изменяются с изменением концентрации диффундирующего вещества.
Основной закон массоотдачи является аналогом закона Ньютона и формулируется так: количество вещества, перенесенного потоком от поверхности раздела фаз (контакта фаз) в воспринимающую фазу или в обратном направлении, прямо пропорционально разности концентраций у поверхности контакта фаз и в ядре потока воспринимающей фазы, площади поверхности контакта фаз и продолжительности процесса. Согласно теории диффузионного пограничного слоя распределяемое вещество переносится из ядра потока жидкости к поверхности раздела фаз непосредственно конвективными потоками жидкости и молекулярной диффузией. В рассматриваемой системе (рис.3) различают ядро потока и пограничный диффузионный слой. В ядре перенос вещества осуществляется преимущественно потоками жидкости или газа. В условиях турбулентного течения потоков концентрация распределяемого вещества в данном сечении в условиях стационарного режима сохраняется постоянной. По мере приближения к пограничному диффузионному слою турбулентный перенос уменьшается и начинает увеличиваться перенос за счет молекулярной диффузии. При этом возникает градиент концентрации распределяемого вещества, растущий по мере приближения к границе. Таким образом, область пограничного диффузионного слоя —это область появления и роста градиента концентрации, область увеличения влияния скорости молекулярной диффузии на общую скорость массопередачи. Примем, что распределяемое вещество М переходит из фазы G, в которой его концентрация выше равновесной, в фазу L. Рис. 3. К выводу уравнения массоотдачи Если концентрации вещества в ядрах фаз принять равными у f и хf, а концентрации на поверхности раздела фаз — соответственно у г и х г, то процесс массоотдачи вещества из ядра фазы G к поверхности раздела фаз и от поверхности раздела фаз в ядро фазы L можно записать так:
Размерность коэффициента массоотдачи
Коэффициент массоотдачи показывает, какое количество вещества передается от поверхности контакта фаз площадью 1 м2 в ядро воспринимающей фазы или в обратном направлении в течение единицы времени при разности движущих сил, равной единице. По физическому смыслу коэффициенты массоотдачи отличаются от коэффициентов массопередачи, но выражаются в одинаковых единицах. Для установившегося процесса dM выражает количество вещества, перенесенного от поверхности контакта фаз в ядро или из ядра потока к ее поверхности в единицу времени. Для этого случая уравнение (12) перепишется так:
Если β = const для всей поверхности контакта фаз,
β = Nuд D/ l (14)
|