Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Датчики





Для получения ультразвука используются специальные преобразователи — трансдьюсеры, которые превращают электрическую энергию в энергию ультразвука. Получение ультразвука базируется на обратном пьезоэлектрическом эффекте. Суть эффекта состоит в том, что если к определенным материалам (пьезоэлектрикам) приложить электрическое напряжение, то произойдет изменение их формы (рис. 12).


Рис. 12. Обратный пьезоэлектрический эффект.

С этой целью в ультразвуковых приборах чаще всего применяются искусственные пьезоэлектрики, такие, как цирконат или титанат свинца. При отсутствии электрического тока пьезоэлемент возвращается к исходной форме, а при изменении полярности вновь произойдет изменение формы, но уже в обратном направлении. Если к пьезоэлементу приложить быстропеременный ток, то элемент начнет с высокой частотой сжиматься и расширяться (т.е. колебаться), генерируя ультразвуковое поле. Рабочая частота трансдьюсера (резонансная частота} определяется отношением скорости распространения ультразвука в пьезоэлементе к удвоенной толщине этого пьезоэлемента. Детектирование отраженных сигналов базируется на прямом пьезоэлектрическом эффекте (рис. 13).


Рис. 13. Прямой пьезоэлектрический эффект.

Возвращающиеся сигналы вызывают колебания пьезоэлемента и появление на его гранях переменного электрического тока. В этом случае пьезоэлемент функционирует как ультразвуковой датчик. Обычно в ультразвуковых приборах для излучения и приема ультразвука используются одни и те же элементы. Поэтому термины "преобразователь", "трансдьюсер", "датчик" являются синонимами. Ультразвуковые датчики представляют собой сложные устройства и, в зависимости от способа развертки изображения, делятся на датчики для приборов медленного сканирования (одноэлементные) и быстрого сканирования (сканирования в реальном времени) — механические и электронные. Механические датчики могут быть одно- и многоэлементные (анулярные). Развертка ультразвукового луча может достигаться за счет качания элемента, вращения элемента или качания акустического зеркала (рис. 14).


Рис. 14. Механические секторные датчики.

Изображение на экране в этом случае имеет форму сектора (секторные датчики) или окружности (круговые датчики). Электронные датчики являются многоэлементными и в зависимости от формы получаемого изображения могут быть секторными, линейными, конвексными (выпуклыми) (рис. 15).


Рис. 15. Электронные многоэлементные датчики.

Развертка изображения в секторном датчике достигается за счет качания ультразвукового луча с его одновременной фокусировкой (рис. 16).


Рис. 16. Электронный секторный датчик с фазированной антенной.

В линейных и конвексных датчиках развертка изображения достигается путем возбуждения группы элементов с пошаговым их перемещением вдоль антенной решетки с одновременной фокусировкой (рис. 17).


Рис. 17. Электронный линейный датчик.

Ультразвуковые датчики в деталях отличаются устройством друг от друга, однако их принципиальная схема представлена на рисунке 18.


Рис. 18. Устройство ультразвукового датчика.

Одноэлементный трансдьюсер в форме диска в режиме непрерывного излучения образует ультразвуковое поле, форма которого меняется в зависимости от расстояния (рис. 19).


Рис. 19. Два поля нефокусированного трансдьюсера.

Иногда могут наблюдаться дополнительные ультразвуковые "потоки", получившие названия боковых лепестков. Расстояние от диска на длину протяженности ближнего поля (зоны) называется ближней зоной. Зона за границей ближней называется дальней. Протяженность ближней зоны равна отношению квадрата диаметра трансдьюсера к 4 длинам волны. В дальней зоне диаметр ультразвукового поля увеличивается. Место наибольшего сужения ультразвукового луча называется зоной фокуса, а расстояние между трансдьюсером и зоной фокуса — фокусным расстоянием. Существуют различные способы фокусировки ультразвукового луча. Наиболее простым способом фокусировки является акустическая линза (рис. 20).


Рис. 20. Фокусировка с помощью акустической линзы.

С ее помощью можно сфокусировать ультразвуковой луч на определенной глубине, которая зависит от кривизны линзы. Данный способ фокусировки не позволяет оперативно изменять фокусное расстояние, что неудобно в практической работе. Другим способом фокусировки является использование акустического зеркала (рис. 21).


Рис. 21. Фокусировка с помощью акустического зеркала.

В этом случае, изменяя расстояние между зеркалом и трансдьюсером, мы будем менять фокусное расстояние. В современных приборах с многоэлементными электронными датчиками основой фокусировки является электронная фокусировка (рис. 17). Имея систему электронной фокусировки, мы можем с панели прибора изменять фокусное расстояние, однако, для каждого изображения мы будем иметь только одну зону фокуса. Так как для получения изображения используются очень короткие ультразвуковые импульсы, излучаемые 1000 раз в секунду (частота повторения импульсов 1 кГц), то 99,9% времени прибор работает как приемник отраженных сигналов. Имея такой запас времени, возможно запрограммировать прибор таким образом, чтобы при первом получении изображения была выбрана ближняя зона фокуса (рис. 22) и информация, полученная с этой зоны, была сохранена.


Рис. 22. Способ динамической фокусировки.

Далее — выбор следующей зоны фокуса, получение информации, сохранение. И так далее. В результате получается комбинированное изображение, сфокусированное по всей глубине. Следует, правда, отметить, что такой способ фокусировки требует значительных временных затрат на получение одного изображения (кадра), что вызывает уменьшение частоты кадров и мерцание изображения. Почему же столько усилий прикладывается для фокусировки ультразвукового луча? Дело в том, что чем уже луч, тем лучше боковая (латеральная, по азимуту) разрешающая способность. Боковая разрешающая способность — это минимальное расстояние между двумя объектами, расположенными перпендикулярно направлению распространения энергии, которые представляются на экране монитора в виде раздельных структур (рис. 23).


Рис. 23. Способ динамической фокусировки.

Боковая разрешающая способность равна диаметру ультразвукового луча. Осевая разрешающая способность — это минимальное расстояние между двумя объектами, расположенными вдоль направления распространения энергии, которые представляются на экране монитора в виде раздельных структур (рис. 24).


Рис. 24. Осевая разрешающая способность: чем короче ультразвуковой импульс, тем она лучше.

Осевая разрешающая способность зависит от пространственной протяженности ультразвукового импульса — чем короче импульс, тем лучше разрешение. Для укорочения импульса используется как механическое, так и электронное гашение ультразвуковых колебаний. Как правило, осевая разрешающая способность лучше боковой.







Дата добавления: 2015-09-04; просмотров: 1186. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия