ПРИБОРЫ ДЛЯ ДОППЛЕРОГРАФИИ
Ультразвуковой метод исследования позволяет получать не только информацию о структурном состоянии органов и тканей, но и характеризовать потоки в сосудах. В основе этой способности лежит эффект Допплера — изменение частоты принимаемого звука при движении относительно среды источника или приемника звука или тела, рассеивающего звук. Он наблюдается из-за того, что скорость распространения ультразвука в любой однородной среде является постоянной. Следовательно, если источник звука движется с постоянной скоростью, звуковые волны, излучаемые в направлении движения как бы сжимаются, увеличивая частоту звука. Волны, излучаемые в обратном направлении, как бы растягиваются, вызывая снижение частоты звука (рис. 30). Путем сопоставления исходной частоты ультразвука с измененной возможно определить долллеровский сдвиг и рассчитать скорость. Не имеет значения, излучается ли звук движущимся объектом или этот объект отражает звуковые волны. Во втором случае источник ультразука может быть неподвижным (ультразвуковой датчик), а в качестве отражателя ультразвуковых волн могут выступать движущиеся эритроциты. Допплеровский сдвиг может быть как положительным (если отражатель движется к источнику звука), так и отрицательным (если отражатель движется от источника звука). В том случае, если направление падения ультразвукового луча не параллельно направлению движения отражателя, необходимо скорректировать допплеровский сдвиг на косинус угла q между падающим лучом и направлением движения отражателя (рис. 31). Для получения допплеровской информации применяются два типа устройств — постоянноволновые и импульсные. В постоянноволновом допплеровском приборе датчик состоит из двух трансдьюсеров: один из них постоянно излучает ультразвук, другой постоянно принимает отраженные сигналы. Приемник определяет допплеровский сдвиг, который обычно составляет-1/1000 частоты источника ультразвука (слышимый диапазон) и передает сигнал на громкоговорители и, параллельно, на монитор для качественной и количественной оценки кривой. Постоянноволновые приборы детектируют кровоток почти по всему ходу ультразвукового луча или, другими словами, имеют большой контрольный объем. Это может вызвать получение неадекватной информации при попадании в контрольный объем нескольких сосудов. Однако большой контрольный объем бывает полезен при расчете падения давления при стенозе клапанов сердца. Для того, чтобы оценить кровоток в какой-либо конкретной области, небходимо разместить контрольный объем в исследуемой области (например, внутри определенного сосуда) под визуальным контролем на экране монитора. Это может быть достигнуто при использовании импульсного прибора. Существует верхний предел допплеровского сдвига, который может быть детектирован импульсными приборами (иногда его называют пределом Найквиста). Он составляет примерно 1/2 частоты повторения импульсов. При его превышении происходит искажение допплеровского спектра (aliasing). Чем выше частота повторения импульсов, тем больший допплеровский сдвиг может быть определен без искажений, однако тем ниже чувствительность прибора к низкоскоростным потокам. Ввиду того, что ультразвуковые импульсы, направляемые в ткани, содержат большое количество частот помимо основной, а также из-за того, что скорости отдельных участков потока неодинаковы, отраженный импульс состоит из большого количества различных частот (рис. 32). С помощью быстрого преобразования Фурье частотный состав импульса может быть представлен в виде спектра, который может быть изображен на экране монитора в виде кривой, где по горизонтали откладываются частоты допплеровского сдвига, а по вертикали — амплитуда каждой составляющей. По допплеровскому спектру возможно определять большое количество скоростных параметров кровотока (максимальная скорость, скорость в конце диастолы, средняя скорость и т.д.), однако эти показатели являются уголзависимыми и их точность крайне зависит от точности коррекции угла. И если в крупных неизвитых сосудах коррекция угла не вызывает проблем, то в мелких извитых сосудах (сосуды опухоли) определить направление потока достаточно сложно. Для решения этой проблемы был предложен ряд почти уголнезависимых индексов, наиболее распространенными из которых являются индекс резистентности и пульсаторный индекс. Индекс резистентности является отношением разности максимальной и минимальной скоростей к максимальной скорости потока (рис. 33). Пульсаторный индекс является отношением разности максимальной и минимальной скоростей к средней скорости потока. Получение допплеровского спектра с одного контрольного объема позволяет оценивать кровоток в очень небольшом участке. Цветовая визуализация потоков (цветовое допплеровское картирование) позволяет получать двумерную информацию о кровотоках в реальном времени в дополнение к обычной серошкальной двумерной визуализации. Цветовая допплеровская визуализация расширяет возможности импульсного принципа получения изображения. Сигналы, отраженные от неподвижных структур, распознаются и представляются в серошкальном виде. Если отраженный сигнал имеет частоту, отличную от излученного, то это означает, что он отразился от движущегося объекта. В этом случае производится определение допплеровского сдвига, его знак и величина средней скорости. Эти параметры используются для определения цвета, его насыщенности и яркости. Обычно направление потока к датчику кодируется красным, а от датчика — синим цветом. Яркость цвета определяется скоростью потока. В последние годы появился вариант цветового допплеровского картирования, получивший название "энергетического допплера" (Power Doppler). При энергетическом допплере определяется не значение допплеровского сдвига в отраженном сигнале, а его энергия. Такой подход позволяет повысить чувствительность метода к низким скоростям, сделать его почти уголнезависимым, правда, ценой потери возможности определения абсолютного значения скорости и направления потока. Пример УЗИ-сканера «SLE-101PC» фирмы MEDELKOM (Литва): широкий выбор линейных и конвексных датчиков, простой интерфейс, небольшие габаритные размеры и вес, надежность и доступная цена. Область применения: общеклиническая диагностика хирургия акушерство и гинекология онкология урология педиатрия Параметры сканирования позволяют эффективно выполнять весь спектр ультразвуковых исследований:
|