Создание чертежей. Смысл компьютерной поддержки.
Среди всех проектных работ разработка чертежей, схем и другой документации требует наибольших затрат времени и человеческого труда, при том, что подавляющая часть операций при черчении имеет совершенно рутинный характер. Поскольку чертеж – это в принципе изображение на плоскости, чертежные программы являются двумерными, то, что сегодня называется 2D (2 dimensions). 2D–редакторы и сегодня являются самыми распространенными, однако им свойственны очень серьезные ограничения. В этой проблеме можно выделить несколько аспектов. Часть проблемы составляет то, что чертеж для получения представления об объекте требует хорошо развитого пространственного воображения, а оценить объект с точки зрения дизайна вообще практически не позволяет. Известно, что 80% людей оценивают потребительские свойства изделия по внешнему виду, в меньшей степени это относится к технологическому оборудованию, в большей – судов, самолетов, транспортных средств, профессионального или военного электронного оборудования. Что же касается бытовой электротехники, мебели, посуды, автомобилей, то дизайн приобретает почти решающее значение. То же относится и к архитектуре. Для того, чтобы дефекты дизайнерского решения выявлялись не на натурных моделях, которые в общем-то очень недешевы, необходимо фотографически достоверное изображение объекта, которое, в лучшем случае, можно было бы еще вертеть и разглядывать со всех сторон. Второй аспект – компоновка изделия. При этом очень важно правильно представлять себе расположение его составных частей в пространстве. От этого зависит правильность оценки их взаимодействия не только в механическом плане, но и в плане теплообмена, электромагнитной совместимости и др. Любой практикующий конструктор знает, насколько сложно проработать этот момент на плоской бумаге. Конечно, можно сделать несколько видов и разрезов, что-то расчитать, но это сопряжено с огромными затратами труда. Третий аспект – материальные свойства объектов, такие, как объем, масса, положение центра масс, момент инерции относительно произвольной оси. Это и при объектах относительно простой конфигурации всегда трудно сделать, а любое усложнение может сделать задачу почти неразрешимой. Четвертый аспект – оценка поведения объекта под действием сил, а также в динамике, в особенности во взаимодействии с другими объектами. Это естественным образом стимулировало развитие соответствующего математического аппарата и создание программных продуктов для 3D-моделирования. Что касается создания чертежей, то продвинутые 3D-системы при наличии модели позволяют автоматически получать заданные виды, на которых штриховыми линиями показываются внутренности, или разрезы по указанным плоскостям, то есть вся графическая информация, необходимая для создания чертежа, извлекается достаточно легко. Конечно, какой-то доработки этот материал требует – все-таки информация, содержащаяся в чертеже, не целиком заключается в графике - всегда хватает различных условных обозначений, текста и т.п., но самая трудоемкая и рутинная часть работы оказывается сделанной.Таким образом, 3D-системы не только обладают всеми возможностями 2D-систем в плане создания чертежей, но и имеют очень серьезные преимущества в других планах. Хорошие 3D-системы включают в себя также средства, существенно облегчающие создание сборочных чертежей и спецификаций.
В некоторых программных продуктах предусмотрены средства для облегчения работы с текстовой информацией, которой насыщены машиностроительные чертежи. Это обозначения видов, разрезов, сечений, базовых поверхностей, зон, позиций, сварных швов и т. п. Изменение какого-либо из них требует отслеживания и изменение всех его вхождений, а также текстовых элементов, с ним связанных. При этом затраты времени весьма велики, и велика также вероятность ошибки. Такие программы либо входят в состав CAD-систем, либо легко с ними интегрируются. При переходе к проектированию с компьютерной поддержкой на предприятиях, много лет работавших по традиционной технологии, неминуемо возникает проблема работы со старыми чертежами. Компьютеризация быстро и безжалостно вытесняет сегодня традиционное бумажное проектирование, и организация, которая расчитывает остаться на рынке проектных работ, вынуждена этот путь пройти, по возможности с минимальными затратами., требуется, чтобы все документы, включая чертежи, существовали в электронном виде. Информация, накопленная в предшествующие годы, представляет собой огромную интеллектуальную собственность, поэтому документация, хранящаяся на бумаге, кальке и на фотопленке, чтобы быть использованной в компьютеризованном проектировании и производстве, должна быть преобразована в электронный вид Это можно сделать тремя путями: просто перечертить заново на компьютере, использовать планшет-дигитайзер (жаргонное название – сколка), либо сканировать. Первый путь малореален – просто слишком долго. Второй, конечно, побыстрее первого, но также недостаточно эффективен. Остается третий - но в результате сканирования получается растровое изображение, которое чрезвычайно трудно редактировать, не говоря уж об огромном количестве всякого мусора в виде штрихов, серых пятен, а также о потерянных вследствие общей затертости частях изображения. Компьютерный же чертеж должен быть выполнен в векторном формате. Разница понятна каждому, кто хотя бы немного поработал в растровом редакторе Paint и в векторном AutoCAD. Иными словами, требуется векторизация растрового изображения. Такого рода программы существуют довольно давно, но современные продукты по сравнению с ранними вариантами позволяют значительно большую часть работы переложить на компьютер, хотя и они не позволяют совсем избавиться от ручной работы. Прежде всего эти программы позволяют улучшить качество сканированного изображения: устранять растровый мусор, заливать «дырки», делать растровые линии более гладкими (а они в сканированном изображении уже в результате воспроизведения фактуры бумаги всегда лохматые и извилистые), утолщать или утоньшать их, устранять возникающий при сканировании перекос, устранять линейные и нелинейные искажения при помощи специальной операции, называемой калибровкой. Большинство этих операций может выполняться в пакетном режиме. В результате качество сканированного изображения может быть улучшено весьма значительно. Наиболее продвинутые программы могут распознавать на растровом изображении графические примитивы: отрезки, дуги, окружности, полилинии и т.п. Существует также класс программ, позволяющих векторизовать не весь документ, а только те его фрагменты, которые необходимо редактировать, и работать как с векторными фрагментами чертежа, так и с растровыми. Они называются гибридными редакторами и позволяют существенно сэкономить время при работе со старыми чертежами.
|