ЯДЕРНЫЕ РЕАКЦИИ. ЗАКОНЫ СОХРАНЕНИЯ В ЯДЕРНЫХ РЕАКЦИЯХ
Ядерной реакцией называется процесс интенсивного взаимодействия атомного ядра с элементарной частицей или с другим ядром, приводящий к преобразованию ядра (или ядер). Взаимодействие реагирующих частиц возникает при сближении их до расстояний порядка 10-13 смблагодаря действию ядерных сил. В ядерных реакциях выполняются законы сохранения энергии, импульса, электрического заряда, барионного заряда. Наиболее распространенным видом ядерной реакции является взаимодействие легкой частицы a с ядром X, в результате которого образуется легкая частица b и ядро Y: Х + a — Y + b. Обычно реакции такого вида записываются в виде: X (a, b) Y. В скобках указываются участвующие в реакции легкие частицы, сначала исходная, затем конечная. В качестве частиц а и b могут фигурировать нейтрон (n), протон (р), ядро тяжелого водорода —дейтон (d), α-частица (α) и γ-фотон (γ). Ядерные реакции могут сопровождаться как выделением, так и поглощением энергии. Количество выделяющейся энергии называется тепловым эффектом реакции. Он определяется разностью масс покоя (выраженных в энергетических единицах) исходных и конечных ядер. Если сумма масс образующихся ядер превосходит сумму масс исходных ядер, реакция идет с поглощением энергии и тепловой эффект ее будет отрицательным. Реакции, вызываемые не очень быстрыми частицами, протекают в два этапа. Первый этап заключается в захвате приблизившейся к ядру X на достаточно малое расстояние (такое, чтобы могли вступить в действие ядерные силы) посторонней частицы а и образовании промежуточного ядра, называемого составным ядром или компаунд-ядром. Энергия, привнесенная частицей а (она слагается из кинетической энергии частицы и энергии ее связи с ядром), за очень короткое время перераспределяется между всеми нуклонами составного ядра, в результате чего это ядро оказывается в возбужденном состоянии. На втором этапе составное ядро испускает частицу b (n, р, α, γ)- Символически такое двустадийное протекание реакции можно представить следующим образом: . (12.6) Может случиться, что испущенная частица тождественна с захваченной (a=b). Тогда процесс (12.6) называют рассеянием, причем в случае, если энергия частицы b равна энергии частицы а, рассеяние будет упругим, в противном случае — неупругим. Ядерная реакция имеет место, если частица b не тождественна с а. Промежуток времени , который требуется нуклону с энергией порядка 1 МэВ (что соответствует скорости нуклона ~ 109 см/с) для того, чтобы пройти расстояние, равное диаметру ядра (~10-12см), принимается в качестве естественной ядерной единицы времени. Эта единица имеет величину ~ c. Среднее время жизни составного ядра на много порядков превосходит ядерное время. Следовательно, распад составного ядра (т. е. испускание им частицы b) представляет собой процесс, не зависящий от первого этапа реакции, заключающегося в захвате частицы а (составное ядро как бы «забывает» способ своего образования). Одно и то же составное ядро может распадаться различными путями, причем характер этих путей и их относительная вероятность не зависят от способа образования составного ядра. Реакции, вызываемые быстрыми нуклонами и дейтонами, протекают без образования промежуточного ядра. Такие реакции носят название прямых ядерных взаимодействий. Типичной реакцией прямого взаимодействия является реакция срыва, наблюдающаяся при нецентральных соударениях дейтона с ядром. При таких соударениях один из нуклонов дейтона может попасть в зону действия ядерных сил и будет захвачен ядром, в то время как другой нуклон останется вне зоны действия ядерных сил и пролетит мимо ядра. В ядерной физике вероятность взаимодействия принято характеризовать с помощью эффективного сечения σ. Смысл этой величины заключается в следующем. Пусть поток частиц, например нейтронов, падает на мишень, настолько тонкую, что ядра мишени не перекрывают друг друга (рис.12.8). Если бы ядра были твердыми шариками с поперечным сечением а, а падающие частицы — твердыми шариками с исчезающе малым сечением σ, то вероятность того, что падающая частица заденет одно из ядер мишени, была бы равна , где n — концентрация ядер, т. е. число их в единице объема мишени, δ— толщина мишени ( определяет относительную долю площади мишени, перекрытую ядрами-шариками). Предположим, что плотность падающих частиц равна N. Тогда количество претерпевших столкновения с ядрами частиц ΔN будет равно . (12.7) Следовательно, определив относительное количество частиц, претерпевших столкновения, ΔN/N, можно было бы вычислить поперечное сечение ядра по формуле . (12.8) В действительности ни ядра мишени, ни падающие на нее частицы не являются твердыми шариками. Однако по аналогии с моделью сталкивающихся шариков для характеристики вероятности взаимодействия берут величину σ, определяемую формулой (12.8), в которой под Δ N подразумевают не число столкнувшихся, а число провзаимодействовавших с ядрами мишени частиц. Эта величина и называется эффективным сечением для данной реакции (или процесса). В случае толстой мишени поток частиц будет по мере прохождения через нее постепенно ослабевать. Разбив мишень на тонкие слои, напишем соотношение (12.7) для слоя толщины dx, находящегося на глубине х от поверхности: , где N (x)—поток частиц на глубине х. Мы поставили справа знак минус, чтобы dN можно было рассматривать как приращение (а не ослабление) потока на пути dx. Интегрирование этого уравнения приводит к соотношению: , в котором — первичный поток, а —поток на глубине δ. Таким образом, измеряя ослабление потока частиц при прохождении их через мишень толщины δ, можно определить сечение взаимодействия по формуле: . В качестве единицы эффективного сечения ядерных процессов принят барн:1 барн = . Первая ядерная реакция была осуществлена Резерфордом в 1919 г. При облучении азота α-частицами, испускаемыми радиоактивным источником, некоторые ядра азота превращались в ядра кислорода, испуская при этом протон. Уравнение этой реакции имеет вид: . Наибольшее значение имеют реакции, вызываемые нейтронами. В отличие от заряженных частиц нейтроны не испытывают кулоновского отталкивания, вследствие чего они могут проникать в ядра, обладая весьма малой энергией. Эффективные сечения реакций обычно возрастают при уменьшении энергии нейтронов (чем меньше скорость нейтрона, тем больше время, которое он проводит в сфере действия ядерных сил, пролетая вблизи ядра, и, следовательно, тем больше вероятность его захвата. Поэтому многие эффективные сечения изменяются пропорционально . Однако часто наблюдаются случаи, когда сечение захвата нейтронов имеет резко выраженный максимум для нейтронов определенной энергии. На рис. 12.9 приведена кривая зависимости сечения захвата нейтрона ядром U236 от энергии нейтрона E. Масштаб по обеим осям — логарифмический. В этом случае зависимость изображается прямой линией. Кроме области энергий вблизи 7эВ ход графика действительно близок к прямолинейному. При Е = Еr = 7 эВ сечение захвата резко возрастает, достигая 23000 барн. Вид кривой указывает на то, что явление имеет резонансный характер. Такое резонансное поглощение имеет место в том случае, когда энергия, привносимая нейтроном в составное ядро, в точности равна той энергии, которая необходима для перевода составного ядра на возбужденный энергетический уровень (рис. 12.8). Подобным же образом для фотонов, энергия которых равна разности энергий между первым возбужденным и основным уровнями атома, вероятность поглощения особенно велика (резонансное поглощение света). 12.6. ДЕЛЕНИЕ ЯДЕР При облучении урана нейтронами образуются элементы из середины периодической системы—барий и лантан. Захватившее нейтрон ядро урана делится на две примерно равные части, получившие название осколков деления. Деление может происходить разными путями. Всего образуется около 80 различных осколков, причем наиболее вероятным является деление на осколки, массы которых относятся как 2:3. Кривая нa рис.12.10 дает относительный выход (в процентах) осколков разной массы, возникающих при делении U238 медленными (тепловыми) нейтронами (масштаб по оси ординат — логарифмический). Из этой кривой видно, что относительное число актов деления, при которых образуются два осколка равной массы (А ≈ 117), составляет 1%, в то время как образование осколков с массовыми числами порядка 95 и 140 (95: 140 ≈ 2:3) наблюдается в 7% случаев. Энергия связи, приходящаяся на один нуклон, для ядер средней массы значительно больше, чем у тяжелых ядер, следовательно, деление ядер должно сопровождаться выделением большого количества энергии. При делении каждого ядра высвобождается несколько нейтронов. Относительное количество нейтронов в тяжелых ядрах заметно больше, чем в средних ядрах. Поэтому образовавшиеся осколки оказываются сильно перегруженными нейтронами, в результате чего они выделяют по нескольку нейтронов. Большинство нейтронов испускается мгновенно (за время, меньшее ~10-14 с). Часть (около 0,75%) нейтронов, получившая название запаздывающих нейтронов, испускается не мгновенно, а с запаздыванием от 0,05с до 1 мин. В среднем на каждый акт деления приходится 2,5 выделившихся нейтронов. Выделение мгновенных и запаздывающих нейтронов не устраняет полностью перегрузку осколков деления нейтронами. Поэтому осколки оказываются в большинстве радиоактивными и претерпевают цепочку β-превращений, сопровождаемых испусканием γ-лучей. Один из путей, которыми осуществляется деление, выглядит следующим образом: . Осколки деления — цезий и рубидий — претерпевают превращения: . Конечные продукты — церий Се140 и цирконий Zr94 — являются стабильными. Образовавшееся в результате захвата нейтрона ядро U239 нестабильно (период полураспада Т равен 25 мин). Испуская электрон, антинейтрино и γ-фотон, оно превращается в ядро трансуранового элемента нептуния Np239. Нептуний также претерпевает β -распад (Т ≈ 2,3 дня), превращаясь в плутонии Рu239. Эта цепочка превращений может быть представлена следующим образом: . Плутоний α-радиоактивен, однако его период полураспада велик (24 400 лет), и его можно считать практически стабильным. Радиационный захват нейтронов ядром тория Th232 приводит к образованию делящегося изотопа урана U233, отсутствующего в природном уране: . Уран-233 α-радиоактивен (T = 162000 лет). Возникновение при делении ядер U235, Рu239 и U233 нескольких нейтронов делает возможным осуществление цепной ядерной реакции. Действительно, испущенные при делении одного ядра z нейтронов могут вызвать деление z ядер, в результате будет испущено z 2 новых нейтронов, которые вызовут деление z 2 ядер, и т. д. Таким образом, количество нейтронов, рождающихся в каждом поколении, нарастает в геометрической прогрессии. Нейтроны, испускаемые при делении ядер U235, имеют в среднем энергию 2 МэВ, что соответствует скорости 2·109 см/с. Поэтому время, протекающее между рождением нейтрона и захватом его новым делящимся ядром, очень мало, так что процесс размножения нейтронов в делящемся веществе протекает весьма быстро. Процесс размножения нейтронов протекал бы описанным образом при условии, что все выделившиеся нейтроны поглощаются делящимися ядрами. В реальных условиях это не так из-за конечных размеров делящегося тела и большой проникающей способности нейтронов, которые могут покинуть зону реакции прежде, чем будут захвачены каким-либо ядром и вызовут его деление. Кроме того, часть нейтронов поглотится ядрами неделящихся примесей и выйдет из игры, не вызвав деления и не породив новых нейтронов. Поверхность тела растет как квадрат, а объем — как куб линейных размеров. Поэтому относительная доля вылетающих наружу нейтронов уменьшается с ростом массы делящегося вещества. Цепная ядерная реакция в уране может быть осуществлена двумя способами. Первый способ заключается в выделении из природного урана делящегося изотопа U236. Вследствие химической неразличимости изотопов разделение их представляет собой весьма трудную задачу. Однако она была решена несколькими методами. Промышленное значение приобрел диффузионный (точнее, эффузионный) метод разделения, при котором летучее соединение урана UF6 (гексафторид урана) многократно пропускается через перегородку с очень малыми порами. В куске чистого вещества U235 (или Рu239) каждый захваченный ядром нейтрон вызывает деление с испусканием ~2,5 новых нейтронов. Однако, если масса такого куска меньше определенного критического значения (составляющего для U235 примерно 9кг), то большинство испущенных нейтронов вылетает наружу, не вызвав деления, так что цепная реакция не возникает. При массе, большей критической, нейтроны быстро размножаются, и реакция приобретает взрывной характер. На этом основано действие атомной бомбы. Другой способ осуществления цепной реакции используется в ядерных реакторах (называемых также атомными котлами). В качестве делящегося вещества в реакторах служит природный (либо несколько обогащенный изотопом U235) уран. Чтобы предотвратить радиационный захват нейтронов ядрами U238 (который становится особенно интенсивным при энергии нейтронов ~ 7эВ), сравнительно небольшие блоки (куски) делящегося вещества размещают на некотором расстоянии друг от друга, а промежутки между блоками заполняют замедлителем, т. е. веществом, в котором нейтроны замедляются до тепловых скоростей. Сечение захвата тепловых нейтронов ядром U238 составляет всего 3 барна, в то время как сечение деления U235 тепловыми нейтронами почти в 200 раз больше (580 барн). Поэтому, хотя нейтроны сталкиваются с ядрами U238 в 140 раз чаще, чем с ядрами U235, радиационный захват происходит реже, чем деление, и при размерах всего устройства большихкритического коэффициент размножения нейтронов может достигнуть значений, больших единицы. Замедление нейтронов осуществляется за счет упругого рассеяния. В этом случае энергия, теряемая замедляемой частицей, зависит от соотношения масс сталкивающихся частиц. Максимальное количество энергии теряется в случае, если обе частицы имеют одинаковую массу. С этой точки зрения идеальным замедлителем должно было бы быть вещество, содержащее обычный водород, например вода (массы протона и нейтрона примерно одинаковы). Однако такие вещества оказались непригодными в качестве замедлителя, потому что обычный водород поглощает нейтроны, вступая с ними в реакцию: . Ядра замедлителя должны обладать малым сечением захвата нейтронов и большим сечением упругого рассеяния. Этому условию удовлетворяют дейтерий D, а также ядра графита (С) и бериллия (Be). Для уменьшения энергии нейтрона от 2 МэВдо тепловых энергий в тяжелой воде D2О достаточно около 25 столкновений, в С или Be — примерно 100 столкновений. Применение ядерной энергии для мирных целей было впервые осуществлено в СССР под руководством И. В. Курчатова В 1954 г. в Советском Союзе была введена в эксплуатацию первая атомная электростанция мощностью 5000 кВт.
|