Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Класифікація нанотрубок


Для отримання нанотрубки (n, m), графітову площину треба розрізати по напрямах пунктирних ліній і скрутити уздовж напряму вектора R.

Як випливає з визначення, основна класифікація нанотрубок проводиться за способом згортання графітової площини. Цей спосіб згортання визначається двома числами n і m, які задають розкладання напряму згортання на вектора трансляції графітових граток. Це проілюстровано на малюнку.

За значенням параметрів (n, m) розрізняють:

· прямі (ахіральні) нанотрубки

· «крісло» (armchair) n=m

· зигзагоподібні (zigzag) m=0 або n=0

· спіральні (хіральні) нанотрубки

Як неважко здогадатися, при дзеркальному відображенні (n, m) нанотрубка переходить в (m, n) нанотрубку, тому, трубка загального вигляду дзеркально несиметрична. Прямі ж нанотрубки або переходять в себе при дзеркальному відображенні (конфігурація «крісло»), або переходять в себе з точністю до повороту.

Розрізняють металеві і напівпровідникові нанотрубки. Металеві нанотрубки проводять електричний струм навіть при абсолютному нулі температур, тоді як провідність напівпровідникових трубок рівна нулю при абсолютному нулі і зростає при підвищенні температури. Технічно кажучи у напівпровідникових трубок існує заборонена зона. Трубка виявляється металевою, якщо n-m ділиться на 3. Зокрема, металевими є всі трубки типу «крісло». Детальніше див. розділ про електронні властивості нанотрубок.

Одношарові і багатошарові нанотрубки

Сказане відноситься до простих одношарових нанотрубок. У реальних умовах трубки нерідко виходять багатошаровими, тобто є декількома одношаровими нанотрубками, вкладені одна в іншу (так звані "російські матрьошки").

Одношарові та багатошарові коаксіальні нанотрубки утворюються в результаті згортання смуг плоских атомних сіток графіту у безшовні циліндри. Внутрішній діаметр вуглецевих нанотрубок може змінюватися від 0,4 до кількох нанометрів, а у внутрішній об’єм можуть входити інші сполуки. Одношарові трубки мають менше дефектів, а після високотемпературного випалення у інертній атмосфері можна отримати і бездефектні трубки. Тип будови трубки впливає на її хімічні, електронні та механічні властивості. Індивідуальні трубки агрегують із утворенням різних типів зростків, що мають щілини.

Багатошарові нанотрубки відрізняються від одношарових ширшим набором форм та конфігурацій. Різні види будови виявляються як у повздовжньому, так і в поперечному напрямі. Будова типу «російської матрьошки» (Russian dolls) являє собою сукупність коаксіально вкладених одна в одну одношарових циліндричних нанотрубок. Інший різновид цієї будови, являє собою сукупність вкладених одна в одну коаксіальних призм; остання з наведених структур нагадує сувій (scroll). Для усіх наведених структур характерне значення відстані між сусідніми графеновими шарами, близьке до величини 0,34 нм, що відповідає площинам кристалічного графіту. Реалізація тієї чи іншої будови у певній експериментальній ситуації залежить від умов синтезу нанотрубок.

Хімія вуглецевих нанотрубоки

Спочатку головним був метод випаровування графіту у електричній дузі в потоці інертного газу. Його активно використовують і нині.

Подібним способом в присутності СеО2 та нанорозмірного нікелю отримані одношарові вуглецеві нанотрубки 0,79 нм. Дугу замінило випаровування графітової мішені в нагрітій печі стрибаючим променем лазера. Сьогодні все поширенішим стає каталітичний піроліз метану, ацетилену та оксиду вуглецю. Нанотрубки із діаметром 20 - 60 нм отримані при згорянні метану на дроті Ni – Cr. Багатошарові нанотрубки довжиною 30 - 130 мкм із внутрішнім діаметром 10 - 200 нм синтезовані із високим виходом при піролізі аерозолю, розчину бензолу з фероценом за температури 800-950°С.

Метод заснований на використанні розчинів вуглеводнів та каталізаторів. Отримання нанотрубок – процес, що важко контролюється, як правило, він супроводжується утворенням інших форм вуглецю. У наш час під терміном «хімія нанотрубок» мають на увазі синтез, очистку і різні форми хімічної модифікації внутрішньої та зовнішньої поверхні трубок. До хімії нанотрубок можна також віднести введення інших частинок у міжтрубний простір зростків, використання нанотрубок як матриць для отримання різних матеріалів, включаючи адсорбенти, сенсори та каталізатори.

Фулеренові наношестерні

Особливості будови вуглецевих нанотрубок приводять до того, що їх хімія відрізняється від хімії фулеренів і графіту. Фулерени мають невеликий об’єм внутрішньої порожнини, в якій можуть міститися лише кілька атомів інших елементів, у вуглецевих нанотрубок об’єм більший. Фулерен може утворювати молекулярні кристали, графіт – шаровий полімерний кристал. Нанотрубки – проміжний стан. Одношарові трубки ближчі до молекул, багатошарові – до вуглецевих волокон. Окрему трубку прийнято розглядати як одношаровий, а зросток трубок – як двовимірний кристал. Можливі два варіанти заповнення вуглецевих нанотрубок: у процесі синтезу і після отримання трубок. Для заповнення у процесі синтезу важливі добавки сполук, що зупиняють закриття каналу трубки. До таких речовин належить, наприклад, бор. Внутрішні порожнини трубок вдалося заповнити фулеренами С60 та С70. Подібні матеріали становлять інтерес як композити. Цікаво, що в продуктах лазерно–термічного синтезу після їх випалювання у вакуумі при температурі 1100°С знайдені структури типу наностручка. В таких структурах діаметр трубки (1,4 нм) вдвічі перевищує діаметр молекули С60 (0,7 нм), тож молекули фулерену можуть переміщуватися та формувати пари.

З метою з’єднання трубок необхідно відкрити їх кінці, наприклад, шляхом селективного окиснення. Кінці нанотрубок часто закриті п’яти- або шести-вуглецевими циклами, п’ятивуглецеві цикли менш стійкі до окиснення. Окиснення може бути проведене такими газоподібними речовинами, яккисень, повітря, діоксид вуглецю. Можливе використання водних розчинів. Розкриття кінців трубок проходить в концентрованій соляній кислоті. Можлива обробка і іншими кислотами, найбільш часто використовується азотна кислота. Механізм окиснення повністю не вивчений. Заповнення внутрішніх порожнин можна виконувати у рідких середовищах, наприклад, розплавленими оксидами різних металів. При цьому, якщо діаметр трубок менший за 3 нм, утворюється скловидна, а не кристалічна фаза.

Речовини, що вводяться в порожнини каналів вуглецевих нанотрубок, можуть брати участь в різних хімічних реакціях. При термічному розкладі оксидів і їх відновленні були отримані трубки, що вміщували метали, і виконано внутрішньотрубчасте перетворення оксиду калію на його сульфід. Заповнення внутрішніх порожнин трубок також можна виконувати шляхом хімічного осаджування з газової фази, використовуючи, наприклад, леткі сполуки металів.

Великий та важливий розділ нанохімії вуглецевих трубок присвячено отриманню різних функціональних груп на їх бічних поверхнях. Реалізація цього процесу можлива за тривалої обробки кислотами, при цьому поведінка одношарових нанотрубок залежить від способу їх отримання. З поверхні трубки функціональні групи можна видаляти за допомогою нагріву до температури вище 623 К.

Структура зі стабільним нанопуп'янком

Приєднання функціональних груп до бічних поверхонь вуглецевих трубок використовують для надання різних функцій зондам атомно-силовихмікроскопів. Найкращі результати отримують при застосуванні газів.

Використання вуглецевих нанотрубок як матриць дозволяє отримати частинки міді із вузьким розподілом за розміром. Вихідні трубки із діаметрами від 5-10 до 25-35 нм синтезували каталітичним піролізом метану. Вимірюючи концентрацію солі міді у водному розчині і відношення мідь – трубка, отримували після відновлення воднем або наночастинки, або нанодротинки міді. Найменший розмір частинок міді (5 – 10 нм) досягався за низьких концентрацій солі міді в розчині. Збільшення концентрації солі сприяло утворенню нанодротинок міді діаметром від 100 нм до 5 мкм та довжиною до сотень мікронів.

Інтеркалювання одношарових та багатошарових трубок різне. У багатошарових трубках частинки, що інтеркалюються, розташовані між окремими шарами, в одношарових – потрапляють крізь міжтрубний простір зростків.

Інтеркалювання нанотрубок відрізняється від аналогічного процесу у фулеренах. Фулерени, наприклад, С60, утворюють комплекси з переносом заряду тільки із донорами електронів. За даними спектроскопії і вимірювань провідності, зростки одношарових трубок мають подвійні властивості: вони можуть взаємодіяти і з донорами, і з акцепторами. Кристалічні зростки одношарових трубок мають металічні властивості. У таких трубках спостерігається позитивний температурний коефіцієнт. Введення брому та калію зменшує електроопір трубок за температури 300 К у 30 разів і розширює межі позитивного температурного коефіцієнта. Як наслідок, трубки, леговані бромом або калієм, можна віднести до синтетичних металів.

Застосування вуглецевих нанотрубок

Унікальні властивості Н.в. обумовлюють їх перспективне використання в ряді галузей: як армуючих добавок в композиційних матеріалах, для одержання елетропровідних композиційних полімерів, як добавка в метали для одержання надпровідникових матеріалів, компонент холодних емісійних катодів в дисплеях, якісно нове джерело світла, напівпровідникові транзистори з p-n переходами, для виробництва особливих марок графіту, пористого графіту, сировина для виробництва теплоізоляційних матеріалів, як сорбент і сховище водню, як носій каталізаторів, для виготовлення вуглець-літієвих батарей і суперконденсаторів, як мікроелектрод, як мікрозонд і т.д. Надзвичайно продуктивними є хімічні і біологічні галузі застосування Н.в.

Сфери, способи та можливості застосування нанотрубок численні і широкі. Навіть беручи до уваги те, що більша частина результатів останніх дослідів може бути невідома громадськості, вже зараз можна передбачити, що нанотрубки із часом стануть універсальним матеріалом для побудови багатьох об’єктів. Застосування нанотрубок можна розділити на кілька категорій за їх властивостями:

· 1) фізичні, наприклад, присадка до композитних матеріалів, що дозволяє створити із звичайного полімеру об’єкт із більшою міцністю і витривалістю, ніж із легованих сталей. Завдякикапілярним властивостям нанотрубок нині створюють ємкості для водню, що дозволяє у десятки разів збільшити їх об’ємну ємність;

· 2) фізико-хімічні – тут відкривається цілий пласт невідомих реакцій та процесів, із часом нанотрубки стануть основним структурним елементом в електроніці та техніці.

Якщо глобально оцінювати застосування нанотрубок, то можна впевнено стверджувати, що ми стали свідками початку ще однієї технічної революції. В наступні десять років будуть створені нанороботи-репліканти, на основі нанотрубок та інших наноматеріалів. Головною метою їх створення є побудова інших роботів та структур із атомарною якістю. Важко осягнути всі можливості такої перспективи. Ми зможемо, наприклад, перемогти практично всі інфекційні, хронічні, генетичні хвороби, досить буде мати індивідуальну програму керування для нанороботів та один наноробот-реплікант. Він розмножить себе до достатньої кількості і згідно з програмою буде на молекулярному рівні відшукувати збудника хвороби і переробляти його, наприклад, на глікоген.

Література

· Саранчук В.И. и др. Углерод: неизвестное об известном. - Донецк: УК Центр, 2006.

· Ефремкин А. Ф., Иванов В. Б., Романюк А. П., Шибанов В. В. Структурные особенности диенстирольных термоэластопластов, модифицированных мономерами // Ж. ВМС. А. 1990. Т. 32. №9, с. 1995 – 2001.

· Иванов В. Б., Романюк А. П., Шибанов В. В. Кинетика полимеризации в диенстирольных блок-сополимерах // Ж. ВМС. 1993 г. Т. 35. №2, с. 119-124.

· Ван-Чин-Сян Ю. Я., Романюк О. П. Дослідження пошарової полімеризації трикомпонентних систем на основі термоеластопласту. Ж. Вісник НУ «Львівська політехніка» №426. Львів. 2001 р., с. 24-28.

· Мала гірнича енциклопедія. В 3-х т. / За ред. В. С. Білецького. — Донецьк: Донбас, 2004. — ISBN 966-7804-14-3.

 




<== предыдущая лекция | следующая лекция ==>
Диалог 2 | ИДЕАЛЬНЫЙ ГАЗ

Дата добавления: 2015-09-04; просмотров: 704. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия